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Abstract
The Statistics and Security of Quantum Key Distribution

by Scott E. Vinay

In this work our aim has been to elucidate our theoretical developments that bolster
the efficiency of quantum key distribution systems leading to more secure commu-
nication channels, as well as develop rigorous methods for their analysis. After a
review of the necessary mathematical and physical preliminaries and a discussion
of the present state of quantum communication technologies, we begin by investi-
gating the Trojan Horse Attack, a form of side-channel attack that could threaten the
security of existing key distribution protocols. We examine the secret key rates that
may be achieved when an eavesdropper may use any Gaussian state in the presence
of thermal noise, and prove that the coherent state is optimal in this case. We then
allow the eavesdropper to use any separable state, and show that this gives a key
rate bound close to that of the coherent state.

We develop a protocol for a quantum repeater that makes use of the double-
heralding procedure for entanglement-generation. In our analysis, we include sta-
tistical effects on the key rate arising from probabilistic entanglement generation,
which results in some quantum memories decohering while other sections complete
their entanglement generation attempts. We show that this results in secure commu-
nication being possible over thousands of kilometres, allowing for intercontinental
key distribution.

Finally, we investigate in more depth the statistical issues that arise in general
quantum repeater networks. We develop a framework based on Markov chains and
probability generating functions, to show how one may easily calculate an analytic
expression for the completion time of a probabilistic process. We then extend this
method to show how one may track the distribution of the number of errors that
accrue in operating such a process. We apply these methods to a typical quantum
repeater network to get new tight bounds on the achievable key rates.
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Chapter 1

Introduction

1.1 The need for a new kind of communication

Quantum mechanics has long had a reputation as a more acute form of the image of
theoretical physics as a whole; as an esoteric and “pure” science. Quantum commu-
nication, on the other hand, is the result of the intersection of a pure science with the
distrust inherent in the real world. The germination of such an idea was the inven-
tion of quantum money in 1970 ([Wie83], published 1983), whereby a currency can
be made from a quantum state such that it cannot be forged. This did not get much
attention at the time, and it was not until the conception of quantum computers in a
1982 talk by Richard Feynman [Fey82] that it was realised that such ideas were not
simply interesting, but a necessary component of the quantum-technological land-
scape.

In his talk Feynman suggested the possibility of a radically new type of com-
puter, where the bits, logic gates and read-outs were replaced by quantum states,
unitary operations and measurement operators. This was originally proposed for
the purpose of simulating quantum systems; a task that soon becomes impractical
for a classical computer, due to the fact that the number of variables needed to sim-
ulate an n-bit quantum state scales exponentially with n. If you want to accurately
simulate a large quantum state, then surely the best way is to build a large quantum
state yourself!

Whilst the potential that quantum computers hold for simulation purposes is
important, and subject to a large and active area of research, it is arguably not the
reason why they have attracted so much attention. In 1994 Peter Shor devised the
process now known as Shor’s algorithm [Sho94]. This is a method by which a quan-
tum computer can find the prime factors for some integer N in a number of op-
erations that scales poly-logarithmically with N. Whilst this may sound like little
more than an academic curiosity, it actually poses a significant threat to global cy-
bersecurity due to the fact that prime factorisation underpins the security of the
Rivest–Shamir–Adleman (RSA) system — a public-key cryptography scheme that is
ubiquitously used for encoding messages sent over the Internet [RSA78]. All known
methods for trying to crack RSA with classical computers take exponentially long
in N, which means that any realistically long message encoded with RSA would
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take many millions of years to crack with a classical computer. However, this can be
reduced to minutes or less with a sufficiently advanced quantum computer.

Of course, once a technology has been invented, even in concept, it cannot be un-
invented, no matter how dangerous it is. The task instead fell to the academic com-
munity to devise new methods of cryptography that could not be broken, even by
quantum computers. Progress towards this aim has proceeded primarily along two
main paths. One of these is the field of post-quantum cryptography (PQC) [Ber09]. Pro-
ponents of PQC aim to replace RSA with different classical algorithms of sufficient
mathematical complexity that the time required to break them scales exponentially
with the message length, whether attacked by a classical or quantum computer. The
main advantage of PQC schemes is that they can be run on all of the existing hard-
ware and infrastructure that already exists — the wires and fibre-optic cables and
so on that constitute the connections of the Internet. The disadvantage is that PQC
schemes may be computationally secure, but they can never be information-theoretically
secure.1 This means that there is no guarantee that they will not be broken in the
future, and we may be forever stuck in an arms-race between the code-makers and
code-breakers.

The second avenue of investigation for quantum-safe encryption, and the focus
of this thesis, is that of using keys shared by quantum key distribution (QKD), which,
unlike PQC, is information-theoretically secure. This means that an eavesdropper,
Eve, who only intercepts the signals sent between the two legitimate parties Alice
and Bob will never be able to decode the message, even given unbounded computa-
tional power, providing the system was implemented without errors. QKD systems
are of a fundamentally different character to classical encryption systems. They take
advantage of the quantum properties of light, such as the non-comeasurability of
conjugate variables of the optical state. This does, however, mean that an entirely
new network, both of hardware and software, is required by all users.

Whilst the primary purpose of QKD is to encrypt data in the face of possible at-
tacks from the computers of the future, this does not mean that we can consider it
merely as an after-thought, or as something to only be dealt with if and when we
manage to build functional quantum computers. Given the knowledge that quan-
tum computers are likely to be technologically viable in the near future, nefarious
agencies could intercept and store encrypted data, and retroactively decode it when
quantum computers become available. Therefore, the development of robust, long-
range, secure, loophole-free QKD systems has become a unifying project of utmost
urgency for the global physics, computer science, and cryptography communities.

As such, the development of functional and efficient QKD has become a focus of
concerted effort for a great number of researchers. Due to the problem lying at the in-
tersection of multiple disciplines, these come from a diverse range of academic back-
grounds, and have thus far made a great amount of headway in both the theoretical

1See the box in Section 3.
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and experimental aspects. At the time of writing, prototype-stage systems have be-
gun to be deployed by telecommunications companies such as Toshiba [SFI+11]. The
excitement around the promise of such rigorous security has lead to the conceptual
ideas behind QKD branching out to other fields, with some hoping that a quantum-
secured blockchain [KPA+18] will prove to be the future of a decentralised monetary
system.

However, this does not mean that quantum cryptography is a closed case. Al-
though it is provably secure against the type of attacks to which classical cryptogra-
phy is vulnerable, it carries with it its own set of challenges. The fact that many pro-
tocols involve information transfer via individual photons of light means that they
are highly susceptible to attenuation within the optical fibres in a way that classical
communication is not. Additionally, the introduction of the new hardware necessary
for the operation of QKD protocols opens up entirely new vectors for attack, which
must be carefully defended against. In this thesis we introduce original theoretical
developments to help address these shortcomings, to aid in the task of the physics
community of bringing to fruition a new era in secure communication.

1.2 The structure of this thesis

We begin in Chapter 2 with an overview of some of the fundamentals of quantum
mechanics. The concepts introduced here have applicability in many areas of quan-
tum physics research. However, we have focused primarily on aspects which are
particularly relevant to the fields of quantum information theory and cryptography.
This includes the states most commonly used to describe information encoded in
photons, such as Fock states, Gaussian states, and qubits, as well as metrics by which
we may compare them. We also introduce the concept of entanglement, and look at
how it may be constructed, manipulated, quantified, and used in key distribution.
We also briefly discuss some of the implications that quantum mechanics, and en-
tanglement in particular, has for the way in which we think about the fundamental
nature of the world.

In Chapter 3 we continue to discuss important known concepts, but here we nar-
row our focus to the field of quantum communication in particular. We discuss two
of the most common QKD protocols: BB84 and E91, and show how they lead to a
security that is not conditional on an adversary’s computational abilities. We show
how the details of a certain protocol allow us to calculate a bound on the rate at
which it may be used to securely communicate. It is here that we introduce the im-
portant concepts of side-channels and quantum repeaters. These are, respectively,
manners by which Eve may attempt to learn the key without directly measuring
in-transit information, and manners by which the range of quantum communica-
tion by be extended beyond the limit imposed by the attenuation of a single optical
fibre. It is these aspects of QKD that we focus on with our original contributions,
so we spend some time discussing how they affect the operation of a protocol. In
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particular, we discuss a few specific repeater protocols, focussing on a prototypi-
cal example known as the Innsbruck protocol. We also discuss a protocol known
as double-heralding, which is a powerful method for probabilistically generating
entanglement — a concept that we focus on in Chapters 5 and 6.

In Chapter 4 we address the issue of side-channels within BB84. We specifically
investigate an threat known as the Trojan-Horse Attack, which involves Eve sending
her own signal into Alice’s apparatus and measuring the reflected state. Due to the
fact that this may partially encode the information as to which settings Alice has
used to encode her qubit, this presents a threat to the security of the protocol. We
investigate the optimal states for Eve to use, and we consider some novel defences
that Alice may implement against such attacks.

Whilst a quantum communication protocol may be more secure if shown to be
safe against side-channel attacks, it is of limited practical utility if it cannot then
realise this powerful security for communication over long ranges. Therefore, in
Chapter 5 we present our design for a quantum repeater, including descriptions of
how all elements of the protocol may be realised. In particular, we focus on using
double-heralding as the primitive mode of communication between stations. We
give a complete and detailed analysis of this, deriving bounds on the rates at which
the end users may securely communicate. In particular we investigate the issue of
timings, whereby different sections of a repeater network will complete at different
times due to their probabilistic nature.

Upon developing the aforementioned protocol, it became clear that the issue of
the unequal times at which repeater section will connect has the potential to be a
major issue in the construction of a network. We also found it to be the case that a
simple analysis that only considers average values for various quantities would fail
to capture the most interesting behaviour. In Chapter 6 we describe and construct
a full mathematical apparatus for analysing such systems. Based on the concept of
Markov chains, we find results for detailed probability distributions for how long
protocols will take to complete, as well as the number of errors that they will ac-
cumulate in doing so. We apply these results to the Innsbruck protocol for secure
communication, giving an analysis that captures a far richer behaviour than would
be otherwise possible.
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Chapter 2

Quantum mechanics preliminaries

A good understanding of quantum communication and cryptography must build
upon a good understanding of quantum mechanics in general. Here we discuss the
physical and mathematical structures required to give an accurate description of a
quantum-mechanical system.

2.1 Quantum states

A quantum state is the fundamental starting point of all quantum mechanical calcu-
lations. It is the conception of systems as quantum states that has lead us away from
the safe and sensible world of classical Newtonian mechanics, and into the meta-
physically uncomfortable but physically undeniable realm of quantum phenomena.
The nature of quantum states is a vast area of research in and of itself, and is pos-
sibly the most fundamental question in quantum research. In this section, we will
primarily be describing their mathematical formulation, without delving too much
into understanding how these formulations were developed over many decades.

Quantum states may be considered in two distinct but related forms: pure and
mixed, dependent on whether they embody only quantum uncertainty, or a combi-
nation of quantum and classical uncertainty respectively.

2.1.1 Pure states

The question of how best to define a quantum state is one with many different an-
swers. Ultimately, we want to arrive at a vector space, and a set of permissible
operations upon that space, which accurately describes the dynamics of the system.
However, it is not immediately clear how such a space should be constructed. To
answer this, we shall take the concept of a observable to be the primitive object from
which we construct the set of state vectors, rather than the other way around which
is sometimes more common.

We choose to do this from a physically-motivated perspective. Physics is ulti-
mately an experimental investigation of Nature. Theory, in this case, should always
be constructed to explain the results of measurements and to inform predictions. As
such, it seems to us to be most logical to define our mathematical constructs with
respect to our experimental outcomes.
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A pure state of a quantum system may therefore be defined with respect to a set
of measurements that may be made upon it, along with a partitioning into a number
of modes. A mode is a variable which may, in a classical sense, allow for distinguisha-
bility. For example, two particles in two separate locations may be considered to be
understood by quantum states on separate modes.

Suppose we have some set of observable,1 M̂1, M̂2, M̂3, · · · , M̂n, describing ob-
servables that we wish to measure on n modes. For each such observable, there are
a set of eigenstates — these are the states of the mode that are not changed after an
application of M̂. For example, we may have a system that comprises a single pho-
ton that exists in a superposition of up to n different frequencies (modes), where M̂i

measures the polarisation of frequency i as either left or right.
Mathematically, a observable is some operation that acts on some space. These

may, for example, be differential operators acting on a space of functions. However,
in quantum information theory, the observables are typically described as matrices.
An observable operator M̂i that is used to define a space can be written as a d× d di-
agonal vector, with diagonal elements m1

i , m2
i , · · · , md

i corresponding to the results
of the measurement of the observable,2 where d is the number of possible measure-
ment outcomes. This “defines” the space in the sense that we may now talk about
the set of all convex complex combinations of the eigenvectors of this operator. We
may then use this space to talk about the results of other operations (which, when
constructed as matrices in this same basis, will in general be non-diagonal).

The quantum state for a single mode, i, may then initially be thought of as an
element of the complex vector space, Cd. In this formulation, each unique basis
vector corresponds to an eigenstate of the defining observable. Other operators may
then be uniquely defined on that space by their set of eigenvectors. Such quantum
state vectors are typically notated as a ket:

state = |label〉 . (2.1)

The corresponding bra, 〈label|, denotes the complex-conjugated transpose of |label〉.
However, the overall complex phase of a state cannot be measured. To see this,
note that the expectation of an observable M̂ with respect to a state |ψ〉 is given by
〈ψ| M̂ |ψ〉, so the phases will cancel out. Therefore, the space for a single mode is the
projectivisation of the complex space:

P(Cd) = CPd−1 (2.2)

1These may be written as a linear sum of idempotent operators, with well-defined eigenstates.
Physically, this means that there exists states which, when operated upon by the observable, do not
change (i.e. measurement statistics for all other operators on such a state do not change). In practical
situations, these may be very difficult to construct. For example, almost any measurement that is made
on a photon involves the absorption, and therefore destruction, of the photon. In these circumstances,
measurements are more accurately described by Positive Operator-Valued Measures (POVMs). However,
these details are not important for the task of defining the Hilbert space.

2For example, the outcomes of the measurement of the polarisation of a photon may be assigned to
the two values of −1 and +1.
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The construction CPd−1 is known as a complex projective space, and equal to the
equivalence class

{z ∈ Cd|z ∼ λz, λ ∈ C}. (2.3)

In the general physics literature, such spaces are typically referred to by the more
general name of Hilbert spaces. As such, we shall denote CPd−1 by Hd, where the
use of d rather than d− 1 highlights that this is a d-dimensional space.

The Hilbert space for many modes may then be built up from these smaller
modes, as

H = Hd1 ⊗Hd2 ⊗ · · · ⊗Hdn ,

= Hd1×d2×···×dn .
(2.4)

The states on these composite spaces may then be written as:

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉1,2,··· ,n , (2.5)

or, for short:

|ψ〉 = |ψ1, ψ2, · · · , ψn〉1,2,··· ,n . (2.6)

where the subscripts indicate the mode labels. Throughout, we shall use |ψ〉 to indi-
cate a general quantum state.3

One can see from this that the dimensionality of the Hilbert space grows expo-
nentially with the number of modes. It is this fact that underpins the power of quan-
tum computers, and their key difference from classical computers. Both forms of
computer are Turing-equivalent [Deu85], which means that any program that is run
on one can, in principle, be run on the other. However, to fully emulate a quantum
computer’s algorithms on a classical computer will take an infeasible length of time.
A linear increase in the resources required for a quantum algorithm will necessitate
an exponential increase in the resources required for the classical equivalent.

Observables

Suppose we wish to perform some measurement of an observable, M̂, on our state.
With M̂ written as a Hermitian matrix operator4 on Hd, it may always be decom-
posed into a set of projectors onto orthogonal eigenstates. If we let |ei〉 be the eigen-
states of M̂ with eigenvalues Ei respectively, then we may write

M̂ =
d

∑
i=1

Ei |ei〉〈ei| . (2.7)

3We may omit the commas between modes for brevity and clarity where appropriate.
4A Hermitian matrix is one for which M̂ = M̂†, where M̂† is the complex-conjugated transpose of

M̂.
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In measuring M̂, we always project onto one of the eigenstates, returning a mea-
surement result of the corresponding eigenvalue. However, this is done probabilis-
tically. If some state |ψ〉 is operated on by M̂, then the result Ei is returned with
probability

p(Ei) = |〈ei|ψ〉|2 . (2.8)

This implies that we can not deterministically predict the outcome of a measure-
ment, unless the state vector happens to be equal to one of the observable’s eigen-
states. This uncertainty appears to be fundamental. No matter how well we improve
our measurement apparatus, there will always be a result that is unknowable, even
in principle, until the experiment is actually carried out. We call this the inherent
quantum uncertainty in the state. The calculations of a quantum physicist, therefore,
will not typically ask What result will we get?, but instead ask What is the probability
distribution of results that we will get?5

2.1.2 Mixed states

A pure state vector and the matrix of an observable can fully characterise the quan-
tum uncertainty in a system. However, this is not the only kind of uncertainty that
we may encounter. I am uncertain as to what the weather will be like tomorrow.
That does not imply that the weather is dependent on some superposed quantum
state and its fundamental unknowability, it just means that I do not have the capabil-
ity to fully calculate the future behaviour of such a complex, albeit classical, system.
However, uncertainty may be even simpler still. For example, I do not know what
the weather was yesterday in Paris. No future calculations are necessary to fix the
value of yesterday’s weather, it has already happened. It is just the case that I do not
know what it was. We wish for our mathematical apparatus to take such classical
uncertainties into account, on an equal yet distinct footing to the quantum uncer-
tainties, but as a single unified mathematical entity.

This is particularly important since we are generally interested in calculating the
probabilities of things. Suppose we ask “What is the probability that I get measure-
ment result X when I measure state Y?”. It would not do for us to say, “Well this
thing has a quantum probability of pQ and a classical probability of pC.” No, in an
actual experiment, result X either happens or it does not. And when we repeat the
measurement many times, the fraction for which we measure X is given by a single
number, its probability, not as a quantum and classical pair. However, we still wish
to preserve the quantumness of quantum uncertainty. The fact that quantum proba-
bilities are related to complex amplitudes and not real numbers allows for quantum

5This carries over to the realm of quantum computing, and the characterisation of their power in
terms of complexity classes. For a classical computer, the set P is the set of all problems that may be
solved in a number of operations that scales polynomially with the size of the problem. For a quantum
computer, the corresponding set is BQP, or bounded-error quantum polynomial [NC02]. It is the set of
problems for which the likelihood that a quantum algorithm that completes in a polynomial number
of steps will get the answer wrong is less than some ε that does not vary with problem size.
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states to interfere with each other, and give rise to statistical outcomes that are im-
possible with classical mechanics. In Section 2.2 we discuss this in more detail.

The problem of finding such a mathematical construct that satisfies such subtle
probabilistic requirements was solved in 1927 by John von Neuman [VN27] with the
introduction of a mixed state. When mixed, the status of a state is elevated from a
vector onHd to a d× d matrix, on equal standing now with its operators.

Suppose we are given some quantum mode or modes. We may believe that the
quantum state on these modes is |ψ1〉 with probability p1, |ψ2〉 with probability p2,
and so on up to |ψn〉, where ∑n

i=1 pi = 1.6 Our state may be now written as a density
matrix:

ρ =
n

∑
i=1

pi |ψi〉〈ψi| . (2.9)

Note that |ψi〉 do not need to be mutually orthogonal. However, by construction,
ρ is Hermitian, meaning it can be diagonalised. Therefore, we can always re-express
ρ as a new set of probabilities over some orthogonal basis. This highlights an im-
portant fact about density matrices: they do not uniquely identify the states from
which they are built. Once we introduce classical uncertainty, that information is
lost.7 As an example, suppose Alice and Bob got together and examined a state ρ.
Alice might say: “This state has a 50% chance of being |ψ〉, and a 50% chance of being
|φ〉.” Bob might say, “No, this state has a 50% chance of being (|ψ〉+ |φ〉)/

√
2, and

a 50% chance of being (|ψ〉 − |φ〉)/
√

2!” In fact, they would both be correct. Both
distributions over states give the same density matrix, and no experiment could be
performed to distinguish between these two hypotheses.

Given a multi-partite state across modes held between, say, Alice and Bob, we
may also talk about the local view of the state. This is the mixed state that correctly
describes the probabilities of outcomes of measurements that Alice will find when
she performs operations on her part of the state, whilst being ignorant to any mea-
surements or operations that Bob is performing.

If we write some state, ρ, as

ρ = ∑
i

pi σA,i ⊗ σB,i, (2.10)

where σA,i and σB,i are positive semi-definite operators on Alice’s and Bob’s sub-
spaces respectively, then Alice’s local state may be written as

ρA = ∑
i

pi Tr[σB,i] σA,i. (2.11)

6Note how these are true probabilities, and not probability amplitudes, as they were for the coeffi-
cients of a quantum state.

7In contrast, consider a pure state, |ψ〉. If this is superposed with another pure state |φ〉, no infor-
mation is lost. An examination of the mathematical form of the combined state reveals uniquely that
|ψ〉 and |φ〉 were its constituent parts.
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This construction gives the state that represents Alice’s best description of the
system given the incomplete information available to her.

2.1.3 Discrete-variable quantum states

All quantum systems that we consider in this thesis are ones that may be described
by a countable number of modes, either finite or infinite.8 However, within such
states, we can still talk about discrete and continuous states, but where this label ap-
plies to the kinds of variables that we use to characterise the states.

Fock states

One of the most fundamental types of quantum state is the Fock state. The Hilbert
space comprising the set of all Fock states is accordingly known as the Fock space.
Here, the Hilbert space of a single mode has an infinite number of basis states, de-
noted by |0〉 , |1〉 , |2〉 , · · · . The form |k〉 represents the state with precisely k photons
in the mode. The ability to lump together these k photons into a single mode neces-
sarily means they are indistinguishable in every regard, and any distinguishability
(such as photons existing in different places or times) should be represented as oc-
cupations of different modes.

An operator that defines this space is the number operator,

n̂ =
∞

∑
n=0

n |n〉〈n| . (2.12)

Of course, we cannot actually write this (or any other operator that acts on all num-
ber states) out fully in the number basis, since the space is infinite dimensional. In-
stead, we often use construction operators, which, for fixed mode, k, may be divided
into creation operators, â†

k , and annihilation operators, âk. These act on the Fock
states as follows:

â†
k |n〉k =

√
n + 1 |n + 1〉k ,

âk |n〉k =
√

n |n− 1〉k .
(2.13)

Note that operator â†
k only acts non-trivially on mode k, while acting as an identity

operator on all other modes.
These are not Hermitian, so are not directly measurable, although they can be

combined to form any operator on the Fock space. As a proof of this, consider that
the number operator may be written as n̂ = â† â. The |n〉〈n| part of each term is
idempotent, so

8Countable = Bijective with N. For systems with an uncountably infinite number of modes, then
Eq. 2.4 must be replaced with a more intricate construction, which we shall not elaborate on here.
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(â† â)p = n̂p =
∞

∑
n=0

np |n〉〈n| . (2.14)

We may write a weighted sum over such operators as

∞

∑
p=0

αpn̂p =
∞

∑
n=0

[
∞

∑
p=0

αpnp

]
|n〉〈n| , (2.15)

for arbitrary constants {αp}p. Let the quantity in the square brackets be written as
Λ(n). This is, by definition, simply an arbitrary analytic function of n. Suppose that
the operator we wish to construct takes values {βn|n = 0, 1, 2, · · · } on the diago-
nal. We then only need to choose {αp}p such that Λ(n) = βn on the non-negative
integers, thus constructing an arbitrary operator that is diagonal in the Fock basis
from creation and annihilation operators. To construct the offset diagonal that is m
elements away from the diagonal, we perform the same procedure, but pre-multiply
the end result by âm/

√
m! or â†m/

√
m!.

The Fock space is typically one of the first and most foundational concepts that a
student of quantum optics will encounter. This fact can actually highlight key con-
ceptual differences between the quantum physics of optics and of solid-state physics.
In the latter, the number of particles mostly remains fixed. We do not, at typical ex-
perimental temperatures, see the presence of entire atoms fluctuating in and out of
existence. We may therefore, for example, point to a proton, and ask “what is the
state of this proton?” This stands in contrast to the bosonic case, where one cannot
point unambiguously to a photon, but only to the photonic field, which can con-
tain a superposition of different numbers of photons. In the solid-state case, then
the different modes may represent the different distinct particles, and the states of
each mode be the different states of such a particle. If these particles are indistin-
guishable, then this indistinguishability would be recaptured by symmetrising or
anti-symmetrising the state, depending on whether they were bosons or fermions.

So we may have a state where, in a solid-state situation, we describe the modes
as being different particles, and the states as different frequencies, whereas in the
bosonic case we may have the different modes being different frequencies, and the
different states being the number of excitations, or particles, in that mode. We may
see that the two paradigms may almost be thought of as being complementary of
each other. This duality in the expression of a multi-particle multi-mode quantum
state has the potential to be confusing, so a careful study of the Fock space should
be a priority for all new students.

This duality in fact highlights a major advantage of Fock states — they are ex-
tremely general. We may always recast a fixed Hilbert space of the solid-state form
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into a Fock space form, but the reverse is not always true.9 The Fock-space allows for
what is known as a dual-rail or multi-rail encoding of states, where the basis states
are expanded out into seperate modes. For example, consider a photon that exists in
an equal superposition of two locations, x1 and x2. Its state may be written as

|ψ〉 = 1√
2
(|x1〉+ |x2〉) . (2.16)

By representing these two locations as separate modes, we can write the state as

|ψ〉 = 1√
2

(
|1, 0〉x1,x2

+ |0, 1〉x1,x2

)
. (2.17)

Note here that what appears as superposition in Eq. 2.16 appears as entanglement
in Eq. 2.17 (see Section 2.2). This is a first clue that different aspects of quantum
weirdness that we can exploit to build quantum technologies, such as superpostion,
entanglement, and non-commutivity of observables, may in fact be simply different
facets of a single underlying quantum advantage. This is investigated in the setting
of QKD in Section 3.1.2, and in the setting of quantum computation in the work of
Howard et al. [HWVE14].

Qubits

The fundamental unit of a classical computer is a bit — a simple mathematical vari-
able that takes on the value 0 or 1, realised in hardware by electrical signals. In a
quantum computer, and indeed quantum technology more generally, these are typ-
ically replaced by qubits, which are elements of the 2-dimensional Hilbert space H2.
The two canonical basis states (also known as the computational basis) are denoted
|0〉 and |1〉, and these are the eigenstates of the Pauli Z matrix, which is given along
with the Pauli X and Y matrices as:10

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (2.18)

A pure qubit may be represented as a two-element complex vector, [α, β]T, such
that |α|2 + |β|2 = 1. This set of co-ordinates may be represented as a point on an
ordinary sphere.11

9Proof: Let HS be a Hilbert space of the first kind, and HF be a Fock space. Let HS have n modes,
and d eigenstates for each mode, so dim(HS) = dn. In the Fock space picture, each combination of
eigenstates on different modes would become a mode, and the eigenstates within each subspace be
different occupation numbers, of which there are infinite, giving dim(HF) = ∞dn. Therefore there
always exists an injective but not bijective mapping fromHS → HF.

10Note that in some works, the Pauli X, Y, Z matrix is denoted σX,Y,Z. Here we use the former since
there is no ambiguity with other variables.

11Mathematically, we can say that CP1 is diffeomorphic to the 2-sphere, S2 [Ken77].
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The Pauli matrices find a wide array of uses within quantum information. In
particular, we often want to perform the measurements corresponding to these op-
erators. The Z operator measures in the computational basis given above, whilst X
measures in the basis given by the states

|+〉 = 1√
2
(|0〉+ |1〉) ,

|−〉 = 1√
2
(|0〉 − |1〉) ,

(2.19)

which are states that we use throughout this thesis. Section 2.2.3 discusses some
of the most interesting uses of these various measurement operators on complex
entangled states.

Physically, qubits may be implemented by any quantum system that exhibits
two degrees of freedom, or can be effectively limited to a two-dimensional subspace.
However, it is a current matter of great research interest as to which physical form is
most suitable for implementation in quantum technology. Current solid-state candi-
dates include superconducting qubits [MCG+07, DS13], ion traps [CZ95, KMW02]
and quantum dots [IAB+99, FRS+03, HK18]. Photons are used to carry the quan-
tum information between distant parties, though there are multiple ways in which
photons may be encoded here. They may be encoded in the polarisation [PBG+05]
or the phase between different modes [LCW+15] (discussed further in Section 3.1.1).
The qubit can even be encoded in occupation number of a mode, if this is restricted
to be at most one. However, a problem with this final encoding is that one cannot
distinguish between a qubit state |0〉 and a lost photon.

2.1.4 Continuous-variable quantum states

Frequently, quantum photonic experiments involve pulses with very large numbers
of photons. Whilst a complete description of the corresponding pure state could be
given by writing down the coefficients of each Fock state, but this would be very
lengthy. Instead, they may be characterised by certain macroscopic continuous vari-
ables. Therefore, although they exist on the same discrete Hilbert space as the Fock
states, we shall call these continuous-variable (CV) states.

When dealing with such states, it is common to talk about the quadrature opera-
tors, which are usually denoted position and momentum, given respectively by:12

x̂ =
1
2

(
â + â†

)
,

p̂ =
−i
2

(
â− â†

)
.

(2.20)

12Defining h̄ = 1. Note that some authors replace the factor of 1/2 with 1/
√

2.
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Note that these do not actually measure the position or momentum of the pulse,13

but are called as such because they obey the same commutation relations:

[x̂, p̂] =
i
2

. (2.21)

Coherent states

The coherent states are distributions over all Fock states, and are particularly notable
as being the output of an ideal laser. They are described by a single complex number,
α, and are given by:

|α〉 = e−|α|
2/2

∞

∑
n=0

αn
√

n!
|n〉 . (2.22)

The vacuum state (Fock state with n = 0) may also be thought of as a coherent
state with α = 0. From here, we can produce a coherent state |α〉 by applying the
unitary displacement operator:

D̂(α) = exp(αâ† − α∗ â). (2.23)

More generally, the displacement can map from a coherent state to another one:

D̂(β) |α〉 = |α + β〉 . (2.24)

The phase may also be rotated by application of the rotation operator:

R̂(θ) |α〉 = exp
(

iθ â† â
)
|α〉 = |eiθα〉 . (2.25)

The coherent states are often called the most classical states, and there are a num-
ber of reasons for this. The first of these is their association with arguably the most
classical system of all: the simple harmonic oscillator. The most basic Hamiltonian
that might act on a single mode is one that simply counts the number of excitations in
the mode and assigns each one the photonic energy E = ω, described by Ĥ = ωâ† â.
The unitary which describes evolution under this Hamiltonian may be seen to be
the rotation operator, R̂(ω), which maps the coherent state to a coherent state with
another time-dependent phase, α(t). The coherent state therefore maintains its struc-
ture under time-evolution. The position and momentum quadratures, 〈α(t)| x̂ |α(t)〉
and 〈α(t)| p̂ |α(t)〉, will similarly be described by α cos (ω t) and α sin (ω t) respec-
tively, exactly as a mass on a spring.

In addition to the mean values of these operators, we can also look at their un-
certainties, ∆x and ∆p, where for some state |ψ〉,

∆x =

√
〈ψ| x̂2 |ψ〉 − 〈ψ| x̂ |ψ〉2, (2.26)

13The momentum of a photon is given by h̄k. Its position is not so well-defined, and problems arise
due to its fully-relativistic speed [Pau12, Haw99].
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and similar for ∆p. For a coherent state, there is the additional specification that
the uncertainty is evenly distributed between the two quadratures. Additionally,
the coherent states have minimal uncertainty.14 That is to say, they tightly satisfy
Heisenberg’s uncertainty principle:

∆x∆p ≥ 1
2

. (2.27)

Since such fundamental uncertainty is a characteristic of the quantum world, this
adds to the justification of denoting them as highly-classical.

The coherent states are often visualised in the x, p phase space. They may be
drawn as a circle of uncertainty. That is to say, it is a circle centred on the co-ordinates

〈ψ| x̂ |ψ〉 , 〈ψ| p̂ |ψ〉 = Re(α), Im(α) (2.28)

with a width and height of ∆x and ∆p respectively. This represents the region of the
phase space for which the Wigner function of the coherent state is above some fixed
value.15 Of course, there are many boundary shapes with such a specified width and
height, so how can we be sure that the coherent state is rotationally symmetric? To
see this, note that the largest-area shape that has equal and fixed width and height
is a square. We can then say that the state’s region of uncertainty16 is the intersection
of the interior of the squares defined by the uncertainties of the rotated quadratures
x̂θ and p̂θ , given by:

x̂θ = cos(θ)x̂ + sin(θ) p̂,

p̂θ = cos(θ) p̂− sin(θ)x̂.
(2.29)

This is shown in Fig. 2.1. Here we illustrate the vacuum state at the origin of the
phase space, which is displaced to form a coherent state, rotated, and then squeezed
(squeezing is discussed in Section 2.1.4).

Another reason for which coherent states are known as the most classical states
is their photon-counting statistics. If |k〉 is a pure Fock state, then

|〈k|α〉|2 = e−|α|
2 |α|2n

n!
. (2.30)

This is a Poisson distribution, with average photon number |α|2. A Poisson distri-
bution describes the number of occurrences of a given event in some period when
the events are independent of each other, and is widely used in classical statistics

14This is how the coherent states were first discovered, when Schrödinger was searching for such
minimal-uncertainty states [Sch26]. They were later found to satisfy a different problem: when Glauber
asked what state might have g(n)(t) = 1 for all t and n, where g(n)(t) is the nth-order coherence
function, in his important work characterising the optical field; [Gla63].

15The Wigner function for a coherent state is given by W(x, p) = 2
π e(x2+p2)/2. If the circle of uncer-

tainty is defined by Eq. 2.27, giving it a radius of 2−3/2, then the circle of uncertainty represents the
area for which the Wigner function is greater than 2

π e−1/16).
16i.e. the area bounded by the circle of uncertainty
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p

q

∆q

D̂(α)

R̂(θ)

Ŝ(ζ)

FIGURE 2.1: Illustration of the effect of displacement, (D̂), rotation,
(R̂), and squeezing, (Ŝ), operators on Gaussian states in phase space.
The initial state is the vacuum state, |0〉.

[Ord67]. In contrast, a single-photon source exhibits anti-bunching, where the num-
ber of co-occurrences of events (i.e. photon arrivals) is less than what would be
expected if they were classical and independent [MW95]. This anti-bunching is seen
as characteristic of the quantum nature of the single-photon state. The Poisson dis-
tribution, therefore, may be considered to be the most classical description for the
statistics of photon-counting.

Squeezed states

The squeezed states are another class of state that saturate the uncertainty relation
given in Eq. 2.27. These, however, are squeezed in one of the quadratures, giving the
state a lower uncertainty for that measurement, while having a higher uncertainty
in the conjugate measurement. The simplest form of these is the single-mode squeezed
states, which exist on the same phase space as the coherent states, and, as the name
suggests, are quantum states on a single mode. They are produced by taking the
single-mode squeezing operator, Ŝ1(ζ), given for an arbitrary complex squeezing
parameter ζ by

Ŝ1(ζ) = exp
(

ζ â†2 − ζ∗ â2
)

, (2.31)

and applying it to a coherent state. Note that the vacuum state itself may be squeezed.
The result is a state that still has a mean quadrature values of 〈x̂〉 = 0 and 〈 p̂〉 = 0,
yet now has a non-zero average photon number

Such squeezed states find use when we wish to measure some variable with
great accuracy, without needing to measure the conjugate variable. For example,
squeezed states have application in advanced laser interferometers, that need to be
able to measure a slight change in a path length, but without needing to know the
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rate at which that path length is changing to the same accuracy [Sch17]. This is to be
implemented in the Advanced LIGO interferometer [AAA+13], which will enable
an increased power to detect gravitational waves.

Squeezing may also be applied to pairs of quantum modes. Two-mode squeezed
states are generated on modes 1 and 2 by the operator

Ŝ2(ζ) = exp
(

ζ â1
† â2

† − ζ∗ â1 â2

)
, (2.32)

When applied to the vacuum state this produces the two-mode squeezed vacuum
(TMSV) state, which is entangled, and given for real ζ by

|TMSV〉 = 1
cosh(ζ)

∞

∑
n=0

[tanh(ζ)]2n |n, n〉1,2 . (2.33)

The strength of the entanglement increases with the squeezing parameter. As ζ →
∞, each state |n, n〉 becomes equally likely, and the state tends towards maximal
entanglement.

2.1.5 State quality measures

For quantum mechanics to be more than simply a descriptive account of nature, and
to instead be a functional and prescriptive tool, it needs to have elements within it
that can quantify the states that we produce with different measures. By such mea-
sures, we are able to say which states are good or bad for a given purpose, and use
this information to characterise the capabilities of the protocols that produced such
states. The number of such measures is vast, and different ones are used throughout
different branches of quantum physics. Here we will introduce a few such measures
which are ubiquitous throughout quantum information theory in particular.

Fidelity

The fidelity is a measure of the closeness of two quantum states, and is defined for
two mixed states ρ and σ by:

F(ρ, σ) = Tr
[√√

ρσ
√

ρ

]2

. (2.34)

The square root of a matrix,
√

A, is defined as the matrix B such that BB = A, with
sign chosen such that B is positive semi-definite. This may be operationally calcu-
lated by diagonalising A and replacing each element in the diagonal matrix with its
square root. This formula for the fidelity was first found by Uhlmann [Uhl76], and
was expanded upon by Jozsa [Joz94], who showed that it was equal to the maximum
transition probability between purifications of ρ and σ. Note that many sources, in-
cluding [NC02] and [BBP15], define F as the square root of Eq. 2.34.
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Despite first appearances, this function is in fact symmetric. This may be more
easily seen when the density matrices ρ and σ are given by the pure states |ρ〉〈ρ| and
|σ〉〈σ| respectively. Then we have that

F(ρ, σ) = |〈ρ|σ〉|2 , (2.35)

which is the transition probability between |ρ〉 and |σ〉. i.e., it is the probability of
getting the measurement corresponding to some measurement projector |ρ〉〈ρ|when
such a measurement is performed on σ.

For the symmetry of the general case, we can write the fidelity as

F(ρ, σ) = Tr
[√(√

ρ
√

σ
) (√

ρ
√

σ
)†
]2

,

≡ ‖√ρ
√

σ‖1

(2.36)

where ‖ · ‖1 is the trace norm. By noting that ‖x‖1 = ‖x†‖1, we may see that
F(ρ, σ) = F(σ, ρ). This matches with what we might expect, given Jozsa’s inter-
pretation of the fidelity as the transition probability in a larger space.

Trace distance

The fidelity may be related to another common function for measuring state distinc-
tion: the trace-distance [FVDG99], given by

D(ρ, σ) =
1
2

Tr[|ρ− σ|] , (2.37)

where |A| =
√

A† A.17 This is related to the fidelity by [FVDG99]

1−
√

F(ρ, σ) ≤ D(ρ, σ) ≤
√

1− F(ρ, σ). (2.38)

The trace distance also has a role of particular importance within state discrimina-
tion. It has been shown that 1−D(pρ, (1− p)σ) is the minimum probability of error
when performing a measurement to discriminate the two states, when ρ is given the
prior probability of p [Hel69].

2.1.6 Entropy

The concept of entropy harks back to the study of thermodynamics that pre-dates its
quantum-theoretical interpretation, and even pre-dates its interpretation in terms of
statistical mechanics. It fundamentally characterises the disorder in a system. To de-
fine the entropy of a system, we should first characterise the system as a probability
distribution. We should say that the system, X , can be in state 1 with probability p1,

17Note that this is equivalent to A picking up a minus sign in the cases where doing so would make
it positive semi-definite.
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state 2 with probability p2, and so on. The entropy of the system is then given by
Boltzmann’s famous equation:18 [Bol12],

S = −∑
i

pi log(pi). (2.39)

There are various different definitions of entropy, varying by an overall factor,
and different bases for the logarithm (which is equivalent to a change of constant
of proportionality). We will typically use base 2 logarithms, due to working mainly
with binary probabilities. This was extended to the case of general mixed quantum
states by von Neumann [Neu32], who showed that a good characterisation of the
entropy in a quantum state was given by

S(ρ) = −Tr[ρ log(ρ)] . (2.40)

Following the seminal work of Claude Shannon in 1948 [Sha48], the quantity S
is often referred to as the information. He was concerned with finding the maximum
lossless compressibility of a typical random string of characters drawn from some
finite alphabet, described by the random variable X . He found that the minimum
length that such a compressed message could be was equal to that of the original
message multiplied by a factor that he called the information, H(X ), which turned
out to be exactly equal to the entropy of the probabilities of the characters in the
alphabet!19 The discovery of the identity S(X ) = H(X ) proved to be foundational
to the field of information theory, and allowed for the study of cryptography to
be given a firm mathematical basis. In particular, it allowed for the security of a
protocol to be defined in terms of mutual information between a legitimate party
and an eavesdropper. This is discussed in Box 2.1.6, Box 3, Box 3.1.3, and in more
detail in Section 3.1.3.

By the form of Eq. 2.39, it can be seen that a string formed by only repetitions
of one character contains zero information,20 whilst a string that contains an even
distribution of all characters maximises the information of the string. Note that this
is to be expected: If, from an alphabet {a,b,c,d}, we told that we could only send
messages that contained the letter b, then there would be no way to encode any
useful information. Any message could be condensed down to the statement “only
the letter b,” regardless of the length of the message.

18The form presented here is formally the Gibbs entropy. However, this was in fact discovered first
by Boltzmann in [Bol66], where he proposed S = −ρ log(ρ). There, ρ was a density in phase space,
which is equivalent to probability density, although he didn’t make this connection explicit until after
Gibbs [Gib78].

19Note that this only applies when the characters in the message are chosen randomly and indepen-
dently according to some probability distribution. When we analyse the information content in, for
example, an actual language, then this does not strictly apply, since the letters are not independent of
one another.

20Here, 0× log(0) is defined to be 0
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Information

Shannon’s original proof that the minimum compressible length of a mes-
sage is given by H(X ) = −∑pi |i∈X pi log(pi) is complex, and it is not nec-
essary to recreate it here. However, we may give an intuitive explanation
for the equivalent statement that this quantity is the information contained
within a typical message an alphabet described by X .
If we let i ∈ X be the unique letters which comprise a message, each with
probability pi, then we can first ask, what is the information content we get
when we receive letter i? We may note that we expect less likely letters
to convey more information. For example, imagine Alice is thinking of a
word, and Bob is trying to guess it letter-by-letter. If Bob correctly guesses
that “E” is in the word, then that does not tell him much. However, if Bob
were to guess the far less common letter “Q,” then he would be in a far
better position to guess the final word. If he were to go on to guess the
double-letter combination of “QQ,” then according to the standard UNIX
dictionary he would have immediately narrowed it down to the single word
“zaqqum.”21 We therefore see how a single additional piece of information
leads to far greater knowledge of the final word.
Codifying this, we can suppose that we get two letters, i and j. We want
to find what function of their probabilities describes their joint informa-
tion content. We can let h(pi) be the information content of letter i. When
we receive both letters, we receive an amount of information from both of
them, and have thus learned an amount h(pi) + h(pj). However, we also
know that the probability of receiving the letters i and j in sequence is pi pj.
Therefore, the information in this pair should be given by h(pi pj). If we
assert that h(pi) should be a continuous, smooth function, then the equa-
tion h(pi) + h(pj) = h(pi pj) is solved for all pi, pj only by h(pi) = log(pi).
The information content of the whole typical message is then given by the
average information in a letter, which is given by H(X ) as above.

21A tree that is said in the Quran to grow in Jahannam (hell), and to feed its inhabitants with fruit
shaped like demonic heads [ZCY18].
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2.2 Entanglement

In their simplest form, multipartite states may be simply separable (also known as
product states), in which case they correspond to our natural notions of particles hav-
ing a specific form that is independent of the states of other particles. In more con-
crete terms, this means that

S(ρ1,2,··· ,n) =
n

∑
i=1

S(ρi), (2.41)

where ρi is state ρ1,2,··· ,n with a partial trace over every subspace except i. In other
words, everything about state ρ1,2,··· ,n may be discovered by measurements only on
single particles, and the combined state may be written as

ρ1,2,··· ,n = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn. (2.42)

These may be generalised to separable states which include some classical uncer-
tainty, but where each component is still a product states. i.e. states of the form

ρ = ∑
j

pj ρ
j
1,2,··· ,n, (2.43)

where each ρ
j
1,2,··· ,n is a density matrix of the form of Eq. 2.42, and each pj is a prob-

ability.
Far more interesting, however, is the class of particles for which, in a very real

sense, the whole is greater than the sum of its parts. Multipartite states for which
the above equations do not hold are known as entangled.

2.2.1 Bell pairs and entanglement quantification

A Bell pair [Bel64] is one of a family of states consisting of two entangled qubits.
Let |0〉 and |1〉 be the computational basis states for a qubit. The four canonical Bell
states are then as follows:

∣∣Φ+
〉
=
|0, 0〉+ |1, 1〉√

2
,

∣∣Φ−〉 = |0, 0〉 − |1, 1〉√
2

,

∣∣Ψ+
〉
=
|0, 1〉+ |1, 0〉√

2
,

∣∣Ψ−〉 = |0, 1〉 − |1, 0〉√
2

.

(2.44)

However, any state that is equivalent to the above under the application of local
(single-particle) unitary operations can be considered a Bell state.
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The Bell states are important because they are maximally entangled. This means
that the information contained within them is entirely non-local. We can see this by
comparing the entropy of the local states with the global state. If, for example, we
let ρ = |Φ+〉〈Φ+|, then S(ρ) = 0, a statement which is true for all pure states. This
can be interpreted as saying that there is no classical uncertainty in the composition
of the state when its global expression is known. On the other hand, S(ρA) = 1.22

This means that if Alice only holds her part, she does not know whether the global
state is |Φ+〉 , |Φ−〉 , |Ψ+〉 , or |Ψ−〉. She does not even know whether her state is part
of a bipartite state, is unentangled, or even part of a larger entangled structure. This
local uncertainty of entangled states is of great importance in the security of many
quantum communication protocols.

For a pure state on two modes, A, B, a common entropic measure of entangle-
ment is the entropy of entanglement, given by S(ρA) (or equivalently S(ρB)). For mixed
states, one can define the entanglement of formation [BDSW96] as

EF(ρ) = min ∑
i

piS(ρi,A), (2.45)

where the minimisation is over all ensembles {(pi, |ψi〉)}i which form
ρ = ∑i pi |ψi〉〈ψi|, and where ρi,A is the partial trace over mode B of |ψi〉〈ψi|. As one
might expect from an entropy-based measure, this is sub-additive under composi-
tion of independent subsystems, and is believed to be additive.23 That is to say,

EF(ρ1 ⊗ ρ2) ≤ EF(ρ1) + EF(ρ2), (2.46)

and it is conjectured that the “≤” may be replaced with a “=”.
The Bell pairs have the important property of forming a basis overH4. However,

clearly not every state inH4 is entangled. From this we can draw the conclusion that
a superposition of entangled states is not necessarily entangled, nor is a classical
mixture of them. An important class of mixed states in the Bell basis is the class
known as Werner states. These are states defined as having a certain fidelity, F, with
respect to a target Bell state. If our target state was |Φ+〉, then a Werner state would
be one of the form

ρW(F) = F
∣∣Φ+

〉〈
Φ+
∣∣+ 1− F

3
[∣∣Φ−〉〈Φ−∣∣+ ∣∣Ψ+

〉〈
Ψ+
∣∣+ ∣∣Ψ−〉〈Ψ−∣∣] . (2.47)

Werner states typically arise from a target state undergoing an error. Suppose
we initially have a copy of |Φ+〉. If, with probability ε, it undergoes some error,
then it will be mapped to some mixture (1− ε) |Φ+〉〈Φ+|+ ερ. If we are ignorant
to the model or mechanism of the model, then we must assume that we lose all

22With logarithms taken to base 2.
23This is a long-held conjecture, but which has only been proved to be true for a number of special

cases, [BN01].
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FIGURE 2.2: Entanglement swapping. Top shows A entangled with
B, and C with D. A Bell-state measurement is performed on B and C,
resulting in A entangled with D, and B with C.

information about the state after an error, letting ρ = 14/4, where 1n is the n × n
identity operator.

2.2.2 Entanglement swapping and teleportation

Once entanglement has been generated, it may be transferred between different
modes and particles. This is one of the ideas that has led to the conception of en-
tanglement as a resource, since like many resources, we can more easily change the
form of it than increase its quantity. This resource theory of quantum entanglement
is particularly relevant when we wish to use entanglement to communicate securely
— an idea that is investigated further in Section 3.1.

Consider 4 modes, A, B, C, D. We may think of these as, for example, the spin
states of 4 electrons. Now suppose that A is entangled with B in the state |Φ+〉, and
C with D, also in |Φ+〉. This is shown in the top part of Fig. 2.2. The global state is
therefore

|Ψ〉A,B,C,D =
∣∣Φ+

〉
A,B ⊗

∣∣Φ+
〉

C,D

=
1
2
(|00, 00〉+ |00, 11〉+ |11, 00〉+ |11, 11〉)A,B,C,D

(2.48)

where |0〉 and |1〉 represent the spin-up and spin-down states respectively. This state
may be written as

|Ψ〉A,B,C,D =
∣∣Φ+

〉
A,D ⊗

∣∣Φ+
〉

B,C +
∣∣Φ−〉A,D ⊗

∣∣Φ−〉B,C +∣∣Ψ+
〉

A,D ⊗
∣∣Ψ+

〉
B,C +

∣∣Ψ−〉A,D ⊗
∣∣Ψ−〉B,C .

(2.49)

Now suppose that we measure modes B and C in the Bell basis. That is, we
perform a measurement such that each of the projectors is of the form | 〉〈 |, where
| 〉 is one of the 4 Bell states. It is clear from Eq. 2.49 that if the measurement result
corresponding to state | 〉 is found, then this will project both the pair B, C and the
pair A, D onto state | 〉. This is shown in the lower part of Fig. 2.2. If the users
at node A and D wish to use their entangled pair for any practical purpose, such
as creating a shared secret bit (as explained in Section 3.1.1), then they must wait
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for the users at B and C to send a classical signal indicating which Bell state they
measured. Before receiving this signal their shared state is an equal mixture of all
four Bell states. This is the maximally mixed state, which, by any measure, contains
no entanglement.

The process is sometimes referred to as teleportation of entanglement. The reason
for this can be seen most clearly when we consider a comparable protocol that uses
a single entangled Bell pair. Suppose that Alice has a quantum state,

|ψ〉A1
= α |0〉+ β |1〉 , (2.50)

and that she and Bob share the state |Φ+〉A2,B, with state labels unrelated to those in
the previous section. The composite state may now be expressed as

∣∣ψ, Φ+
〉

A1,A2,B =
α

2
(∣∣Φ+

〉
+
∣∣Φ−〉)A1,A2

|0〉B +
α

2
(∣∣Ψ+

〉
+
∣∣Ψ−〉)A1,A2

|1〉B +
β

2
(∣∣Ψ+

〉
−
∣∣Ψ−〉)A1,A2

|0〉B +
β

2
(∣∣Φ+

〉
−
∣∣Φ−〉)A1,A2

|1〉B .
(2.51)

Alice now measures her two modes, A1 and A2, in the Bell basis. Leaving Bob
with a state |ψ′〉B. This is related to |ψ〉 by the application of a local unitary operation,
consisting of Z, X, or ZX. The unitary that is to be applied is dependent on the result
of Alice’s Bell-state measurement. By doing this, we can see that Bob now holds the
original state, meaning that the state has been teleported from Alice to Bob!24

2.2.3 Graph-state entanglement

It may be said that entanglement represents the greatest departure from classical
physics, and as such, many of the techniques available to us to study the classi-
cal world no longer hold. It is therefore of great benefit to have access to tech-
niques that aid in the mental manipulation of large and complex states, allowing
for a mathematical method more intuitive than performing arithmetic on an expo-
nentially large number of coefficients. In particular, from our first conception of a
ball rolling down a slope to performing scattering calculations using Feynman di-
agrams, our understanding of the physical world often progresses through use of
visualisations. When studying a classical system, N particles, each with M degrees
of freedom (e.g. standard positional space, where M = 3) may be visualised as N
points in an M-dimensional space. With the exception of the particular case where
the state across N modes is fully separable, that luxury is not available when we

24Of course, some will object that this has not teleported the object itself, but its current state of be-
ing. However, it is reasonable to say that an object is nothing but the set of physical properties which
it holds. A corollary of this is the philosophical principle known as the identity of indiscernibles, which
states that two objects cannot be said to be distinct if they share all properties. This is discussed in a
dialogue in [Bla52], and in the context of quantum physics in [FR88]. A counter to this may be the ac-
curate claim that Alice and Bob’s particles may have other properties that render them distinguishable,
such as energy, although in principle, such continuous variables may also be teleported [BK98].
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FIGURE 2.3: Graph states, showing measurements and local-unitary
(LU) equivalence. Graphs (a) and (b) both represent states that are
equivalent up to LU to the GHZ state: |GHZ〉 =

[
|0〉⊗5 + |1〉⊗5

]
/
√

2.
Graphs (c) and (d) are LU-equivalent to each other, and are the result
of applying either Z, Y, or X to the upper-right qubit shown in red
in (a) and (b). We see here how graphical calculations that may be
tedious for a given state may become more simple when we apply
LUs, perform the measurements, and invert the LUs.

move to the quantum world, where the vast size of the Hilbert space implies that a
state must be represented as a single point in an MN-dimensional space.

Graph states represent a subset of the N-qubit Hilbert space that permits a nice
visualisation in terms of graphs, as shown in Fig. 2.3 [HEB04]. Like all the best pic-
torial representations,25 this allows us to quickly understand and analyse the details
of a system, and even perform calculations without going through the full mathe-
matical machinery of state vectors and matrix operators. Importantly, many of the
quantum states involved in communication networks may be represented as graph
states.

An undirected graph is a collection of nodes, and a set of undirected edges be-
tween them. An empty graph is a set of nodes with no edges between them. In
terms of quantum states, this represents a collection of N qubits, initialised in the
|+〉 state, where each qubit is identified with a node. A graph with a single edge
between nodes i and j represents the state formed by applying a CZ gate to qubits i
and j, defined as:

CZi,j |a, b〉i,j = (−1)ab |a, b〉i,j . (2.52)

This operator stands for controlled Z, and is so-called since it applies a Z gate to mode
j, conditional on mode i being in state |1〉 (or vice-versa). We can similarly define CX
(also known as CNOT) and CY gates.

The degree of a node is the number of edges connected to it. When nodes i and
j are connected by an edge and they each have a degree of one, then the qubits
represented by these nodes are in the state

|ψ〉i,j =
1
2
[|0, 0〉+ |0, 1〉+ |1, 0〉 − |1, 1〉]i,j , (2.53)

25Such as Feynman diagrams [Mat92], tensor networks [WBC11, Orú14], and the diagrams of Hurst
[HK18].
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which is a maximally-entangled state, equivalent up to single-qubit unitary opera-
tions to the Bell pairs.

While any graph can be drawn, and the corresponding state be written down,
it is not the case that an edge between any pair of nodes always implies that they
are perfectly quantumly correlated. This is because the entanglement structure in
any state must obey monogamy of entanglement. Simply put, this says that if modes A
and B are maximally entangled, then they can have no correlation whatsoever with a
third mode C. Conversely, as the strength of entanglement between C and the (A, B)
subsystem increases, the entanglement between A and B decreases, as measured by
the concurrence [CKW00] or the entanglement of formation [dOCF14].

In many quantum systems, we will build up a graph-state by performing en-
tanglement-generating operations between distant nodes. This is particularly the
case for quantum repeaters (see Section 3.2 and Chapter 5), although these graphs
are often of a fairly simple, linear type (exceptions do exist, including more com-
plex graph-state repeaters [EKB15] and repeaters between more than two parties
[WZM+16]). When entanglement is used in some quantum procedure, we typically
want our correlations to be as strong as possible, whilst ensuring that the results of
our measurements are unknowable to any third party that does not possess a part
of the entangled state. We therefore wish to know, given some graph represent-
ing a state, what series of operations we can perform such that we are left with a
maximally-entangled pair across the two qubits of our choosing.

This may be done by performing Pauli measurements on the qubits. Fortunately,
the operation of these measurements may be given as transformations of the graph,
and so allow us to work entirely within a graph formalism, instead of working di-
rectly with the state and keeping tracking of hundreds of amplitudes and phases.
The Pauli measurements have the following graphical operational effects when ap-
plied to a qubit i [HEB04]:

• Zi: Qubit i is removed from the graph, along with all edges connected to it.

• Yi: The neighbourhood of i,Ni, should be identified. This is the subset of nodes
that are connected to i by an edge. The subgraph on this subset is then inverted.
This means each edge between pairs of nodes in this subset is removed, and
each pair of nodes becomes connected by an edge if formerly they were not. A
Pauli Z measurement is then applied to qubit i.

• X: A secondary qubit j ∈ Ni should be chosen. The subgraph onNj is inverted,
and Y applied to qubit i. The subgraph on the new neighbourhood of j is then
inverted again.

Note that all measurements end up removing qubit i from the graph. This is be-
cause the information in i is then fully known, and it can no longer have any quan-
tum correlation with any other subsystem. Note that we are here only discussing
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FIGURE 2.4: Entanglement-swapping by CZ gates. The red dashed
line shows where a CZ unitary is to be applied, and blue dashed cir-
cles show qubits to be measured in the Pauli Y basis.

the operations up to local unitaries. This means that after performing such measure-
ments, single-qubit operations, contingent on the results of the measurement, will
typically need to be applied to the state to return it to its canonical graph-state form.
Here we neglect the full discussion of such operations. This is because when us-
ing graph states for the transmittance of ultimately classical signals, as is the case in
QKD, the effects of local unitaries can be applied after the completion of the protocol,
by performing conditional flips on the bit values generated by the protocol.

In Fig. 2.4 we illustrate how conditional phase rotations (CZ gates) plus Y mea-
surements can be used as an alternative schema to perform entanglement swapping
without the necessity of performing direct two-qubit measurements.

2.2.4 Entanglement distillation

Entanglement distillation is the process by which we may take multiple entangled
pairs, each with some low fidelity with respect to a specific Bell state, and produce
from them a smaller number of pairs of higher fidelity. This is an essential feature
of quantum technologies, since many entanglement-based quantum technologies,
such as quantum key distribution (Section 3.1), set a minimum threshold fidelity
for the entangled states that they use. If the shared states are of a fidelity below
this threshold then no secret key can be generated, no matter how many states are
shared. There is, therefore, a natural trade-off between the number of states in one’s
possession and the fidelity of those states. This trade-off is explored in more detail
in Section 6.

Distillation was first introduced by Bennett et al. in [BBP+96], and refined by
Deutsch et al. in [DEJ+96]. It is this latter scheme that we will use throughout this
thesis when we discuss distillation, and we refer to it by the initials of its inven-
tors: DEJMPS. This operates on two entangled pairs, which we will call ρ1,2 and ρ3,4

(on modes 1, 2, 3, and 4). Here we will discuss the mathematical structure of dis-
tillation and its effect on quantum state operators. For details on how this may be
physically implemented, see Section 5.1.1 We may assume without loss of general-
ity in this protocol that both pairs are diagonal in the Bell basis. The coefficients of
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FIGURE 2.5: Distilling two low-fidelity Bell pairs to a higher-fidelity
pair. Black lines indicate entanglement, with the width of the line in-
dicating fidelity. In (a), Alice entangles her qubits on the left (shown
with a red dashed line), and Bob on the right entangles his qubits. In
(b), Alice and Bob then measure the qubits of one pair, shown by blue
dashed circles. If these measurement disagree, Alice and Bob are left
with (c), a system with no entanglement. If they agree, they are left
with (d), which has a stronger entanglement between the remaining
pair.

|Φ+〉 , |Ψ−〉 , |Ψ+〉 , |Φ−〉 will be denoted a, b, c, d respectively for ρ1,2, and a′, b′, c′, d′

respectively for ρ3,4.
Now the two pairs are entangled with each other: Mode 1 is entangled with

mode 3, and mode 2 with mode 4. This additional entanglement is meant in the
sense of graph-state entanglement as described in Section 2.2.3, so is created by ap-
plying a CZ gate between the nodes to be entangled.

Now modes 1 and 2 are measured in the Z (computational) basis. If the results
are different, then both pairs are discarded. If, however, the outcomes are both 0 or
both 1, then modes 3 and 4 are kept, and are now in a state defined by the following
Bell state coefficients: 

(aa′ + bb′)/N
(c′d + cd′)/N
(cc′ + dd′)/N
(a′b + ab′)/N

 , (2.54)

where

N = (a + b)(a′ + b′) + (c + d)(c′ + d′) (2.55)

is the probability that the distillation attempt will succeed (equal outcomes). This
procedure is shown in Fig. 2.5.

The necessity for measurement results to agree may cause problems when using
distillation in a practical context. For example, a common use of distillation is when
modes 1 and 3 are held by one party (Alice), and 2 and 4 are held by another (Bob)
who is spatially separated from Alice. They may wish to use distillation to produce
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FIGURE 2.6: Probability of distillation success, ND, resulting fidelity,
F′, and probability of bit-wise agreement for two distilled Werner
states, each of initial fidelity F. Fidelity starts at 0.25, which repre-
sents a maximally-mixed (and so maximum entropy) state.

high-fidelity pairs in order to communicate. However, when the qubits are realised
by quantum memories (for example, as up and down spins of a bound electron or
nucleus), then the fidelity of these states will decay over time, due to the finiteness
of the memory lifetimes. Therefore, after Alice and Bob have waited for the signals
from each other to determine whether or not a distillation attempt was successful,
their shared state will have dropped back down to a lower fidelity.

One technique that may be used to get around this is blind distillation. Here, in-
stead of checking if the attempt was successful and repeating it if it was not, Alice
and Bob assume that it was successful, and go on to use their state accordingly by,
for example, performing a measurement on their remaining qubits. Only after this
has been made do they then go back and compare the results of their first measure-
ments to determine whether the distillation was successful (and so whether their
remaining qubits were in fact entangled, which determines whether their second
measurements should have correlated or not). Fortunately, distillation usually suc-
ceeds. If we are distilling two Werner states, each with an initial fidelity with respect
to |Φ+〉 of F, then the probability of success is given by

ND =
8F2 − 4F + 5

9
, (2.56)

which is shown in Fig. 2.6. We also show the fidelity of the resulting state with
respect to |Φ+〉, given by

F′ = (aa′ + bb′)/ND =
10F2 − 2F + 1

9ND
, (2.57)
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as well as the probability that, if Alice and Bob measure each part of the resulting
state in the Z basis, they will get the same measurement result, given by p(ZA =

ZB) = F′ + (1− F′)/3 = (2F′ − 1)/3, where this comes from the fact that they will
agree if they share |Φ+〉 or |Φ−〉. This final quantity is important when realising the
quantum communication protocol E91, as explained in Section 3.1.2.

The decision of whether or not to use blind distillation becomes important when
we consider multiple entanglement connections chained together in a quantum re-
peater (Sections 3.2 and 5.1.2)

2.2.5 The ontology of quantum states

The quantum state, as the primitive object of quantum theory, has been the subject
of intense mathematical analysis for the last century or so, a small sample of which
has been presented in the preceding sections. However, this does not answer the
question: “what actually is a quantum state?” Is its nature something physical, in-
dependent of the questions asked of it? Is it a fancy calculational trick? Or is it a
shadow of something deeper and more fundamental? To answer this, we should
first dispel some notions as to what the state is not.

Firstly, the state does not represent a distribution of the matter of the system
itself. It is a density of probability, but it is not a density of “stuff.” If it were, then
an electron that is passed at speed through a narrow slit should become spread-out
on a screen ahead of it. For a fundamental unit charge of e, then in such a situation
we might find 0.3e of charge over here, 0.5e over there, and 0.2e somewhere else.
This is not the case; we always find electrons comprising exactly one unit charge,
and always in a single location. No matter the broadness of the spread of its likely
locations, it remains a point-like particle.

Equally, the state does not represent the expression of a preordained set of local
variables. This is a conception of the quantum state that we may have when first en-
countering the mysterious correlatory properties of the Bell state. When it is learned
that Bob will always get the same measurement result as Alice, we may ask whether
that was not determined from the start. After all, if I were to put either two red
balls or two blue balls into a bag, and ask Alice and Bob to each withdraw one, the
situation would seem superficially similar. Alice has no knowledge of which ball
she will withdraw, but once she does, she has perfect knowledge of what Bob will
draw. However, the key difference is that such a system is classical. In a quantum
system, she would have the possibility to draw in the {red + blue, red - blue} basis.
The fact that strong correlations exist even when Alice and Bob are free to choose
the basis of measurement implies that quantum theory cannot be described by local
hidden variables or the statistics of classical objects. That is to say, there does not ex-
ist a variable describing the system that has a value determined before measurement
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and only transmits information slower than the speed of light.26 Quantum theory
breaks either or both of these suppositions, depending on one’s preferred interpre-
tation. The degree to which a system deviates from a classical statistical description
is quantified by the CHSH inequality, which is discussed in Section 3.1.2

The Copenhagen interpretation [Sta72] (amongst many others) rejects the apriori
objective reality of physical properties such as momentum. According to this theory,
a measurement causes a collapse of the state, whereupon one out of the many eigen-
state possibilities is “chosen,” and the rest vanish. This is the interpretation most
commonly taught in universities, and is likely how many theorists visualise their
state dynamics in day-to-day calculations. However, many take issue with the fact
that it seems to assign special meaning of a measurement, in addition to, as Einstein
said, “playing dice with the universe.”

The de Broglie-Bohm (dBB) theory [Hol95], on the other hand, proposes to reject
the notion that physics must rely only on slower-than-light signals. It suggest the
existence of faster-than light carrier waves that guide particles through space, like a
bouncy ball carried on a turbulent sea. This gained in popularity for a while, when
experiments by the team of Couter on a model where a single droplet bouncing
on the surface of a bath of liquid seemed to reproduce the results of the double-
slit experiment [CF06]. However, more recent experiments seem to show that the
connection was only surface-deep, and such droplet-based models do not recreate
the quantum case [PHFB18]. Of course, such a model does not in and of itself con-
clusively disprove the existence of a non-local objective-reality theory. However,
notwithstanding experimental objections, dBB does not seem to give a convincing
answer as to how entanglement may be incorporated, nor explain the source of the
power of quantum computers.

Whereas dBB theory tries to put the physical world back on a quasi-classical,
objective grounding, some interpretations of quantum mechanics go in the other di-
rection. In particular, the theories of Relational Quantum Mechanics (RQM) [Rov96],
by Rovelli, and Quantum Bayesianism (QBism) by Fuchs and Mermin [FMS14, FS16,
Fuc17], take a fully Bayesian approach to the problem. In QBism, it is claimed that
the probabilities assigned within quantum theory are degrees of confidence, and not
representative of any absolute, objective claim about the world. This may be seen
as an extension of the classical Bayesian statistical theory. Seen in context of the

26The speed of light restriction is necessary because Alice and Bob are free to choose their measure-
ment settings immediately before their halves of the state reaches them, which would prevent any
signals being sent back to the other part of the state. It has been noticed that there are a class of inter-
pretations, known as superdeterministic theories [Lal01], for which this is not necessary. One could argue
that the physical universe is fully deterministic. Therefore, it is erroneous to suggest that Alice and Bob
had free will in choosing their measurement settings, and that they were in fact predetermined at the
inception of the universe. Unsurprisingly, such theories are not popular. In part, this is because they
are unfalsifiable. Of course, this in itself does not sound the death knell of a theory if it is sufficiently
elegant, such as string theory. Superdeterminism, however, necessitates that the universe was con-
structed in just such a way at the very moment of the Big Bang, such that every particle movement
collaborated to fix the behaviours of all quantum physicists to the specific set of actions that would
render the theory consistent. This may be regarded as the strongest and ugliest possible form of the
anthropic principle, and as such is not taken seriously by many.
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question of the failure of absolute non-realism or absolute non-locality, Fuchs says
of both RQM and QBism that “rather than relinquishing the idea of reality (as they
are often accused of), they are saying that reality is more than any third-person per-
spective can capture,” [Fuc17] by introducing a realism that is contingent upon the
participation of the experimenter.

There may be said to be as almost as many quantum interpretations as there are
quantum physicists [SN16]. However, except in the most extreme of philosophical
cases27 one’s choice of interpretation makes no difference to one’s choice of action,
or the results of calculations. The rest of this thesis will therefore largely focus on
the calculational aspects of various quantum problems and their implications for
real-world security, without needing to dwell on the philosophical interpretations.

27For example, an ardent believer of Everett’s many-worlds theory [EI57, DG15] may take more
risks, in the belief that he will by necessity always experience a world where he is alive (see quantum
suicide, [Teg98]).
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Chapter 3

Quantum communication
preliminaries

In this section we will move from quantum mechanics generally, to the specific field
of quantum key distribution. When it was realised that classical cryptography meth-
ods would no longer be sufficient to protect transmitted data in the age of quantum
computers, a number of new protocols were developed that promised information-
theoretic security. We discuss a few of these in this Section 3.1, and a few within
the context of long-range cryptography in Section 3.2. It is here that we also discuss
some of the mathematical fundamentals of QKD. Of particular importance is Subsec-
tion 3.1.3, in which we examine how security may be guaranteed within the context
of a noisy protocol, and the rates at which secure communication can be guaranteed.
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Information-theoretic security

An example of a protocol that is information-theoretically secure is the one-
time pad. Here, Alice might have some message, m, selected from the mes-
sage setM = [0, 1]n for some n < ∞, and a key k ∈ M. The secret is then
simply produced by s = k ⊕2 m. The secret is then sent on to Bob, who
should also possess k. Bob then reproduces the message by m = k ⊕2 s. It
may be seen by intuition, and was proved by Shannon [Sha48], that there is
no way to reconstruct m from s without k, since the two have no mutual in-
formation. Let m and s be considered as specific values of random variables
M, S, drawn with probabilities p(m), p(s). Then:

I(M; S) = ∑
m,s

p(m, s) log
(

p(m, s)
p(m)p(s)

)
= 0. (3.1)

This may be easily seen to be the case by noting that if k is randomly se-
lected, then p(m, s) = p(m)p(s). The problem with this scheme is that in
order to use it to share a secret message, it requires that both parties already
possess a copy of k. Therefore Alice and Bob would need to posses a sepa-
rate secure channel, over which to distribute k, which means we have only
moved the problem around but not solved it. This problem is addressed by
public-key cryptography, at the expense of guaranteed security.

3.1 Quantum cryptography protocols

Here we will discuss two of the most ubiquitous QKD protocols which serve as a ba-
sis for many of the more complex protocols mentioned in Section 3.2. In Subsection
3.1.2, we show that this ubiquity is greater than it may initially appear, with a deep
equivalence between the two protocols.

3.1.1 Bennet and Brassard 1984

The first quantum cryptography protocol to be developed was that of Charles Bennet
and Giles Brassard in 1984 [BB84], which is usually referred to as BB84 for short. The
fundamental idea which underlies the security of this protocol is the Heisenberg
Uncertainty Principle, where the uncertainty inherent in certain measurements is
shown to lead to a corresponding uncertainty in Eve’s knowledge of the key.
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Protocol description

The protocol works as follows:

• For each qubit, Alice chooses randomly whether to send a state in the Z basis
(|0〉 , |1〉) or the X basis (|+〉 , |−〉).

• Alice then chooses randomly whether to send a 0 bit (represented by |0〉 or
|+〉) or a 1 bit (represented by |1〉 or |−〉).

• This qubit is then encoded in a photon. As discussed in Section 2.1.3, there
are multiple ways of doing this. One such way is by encoding it in the polar-
isation of the photon, which presents itself as a natural option due to the two
orthogonal polarisation modes. Another common encoding is in the phase of
the photon. However, since quantum measurements are invariant under the
global phase of a state, we require a reference mode for the phase to be defined
with respect to. One might suggest sending a second photon along with the first
to act as a reference, but this would reduce the efficiency of the qubit transfer
from Alice to Bob, since we would then require both photons to travel through
the optical fibre without being attenuated. Instead the photon is split into two
modes - an early mode and a late mode. The early mode is then phase-shifted
by θ - a single parameter that entirely determines the qubit as follows:

|0〉 → θ = 0 |+〉 → θ = π/2

|1〉 → θ = π |−〉 → θ = 3π/2
(3.2)

This is shown in Fig. 3.1. In this thesis (in particular Chapter 4) we shall as-
sume that any BB84 protocol is run with this phase-based encoding. This is due
to the fact that θ has a natural interpretation in the physical Hamiltonian when
viewed in this way. We do not lose generality by neglecting the polarisation
encoding, since we may transform between the two encodings by a passive
linear-optical system, as shown in Fig. 3.2.

• This photon is then sent through an optical fibre towards Bob, who randomly
decides on a basis Z or X and measures the photon in that basis. Suppose Bob
happens to choose the same basis that Alice chose. If the photon was transmit-
ted faithfully, with no interference of either natural or malicious origin, then
Bob will measure the same bit as the one decided on by Alice. That is, if Alice
chose base X and bit 0, thus sending state |+〉, then Bob would also measure
state |+〉, and interpret this as a 0 bit. On the other hand, if Alice sends in base
X and Bob measures in Z, then he will get the results |0〉 and |1〉 50% of the
time each, with no correlation with Alice’s choice of bit.

• After sending all qubits, Alice and Bob then publicly announce which basis
they used for each qubit. They discard the results of all measurements for
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FIGURE 3.1: Phase-encoding of a photonic qubit.

which their basis choices disagreed. Then, assuming no errors occurred on the
qubits in flight, the string of bits corresponding to the measurement results on
the remaining qubits will be shared and identical for both Alice and Bob.

This, in the ideal case, will generate a perfectly shared key, which can be used
to encrypt a message (see Information-theoretic security in Section 3). However, we
cannot guarantee that the optical fibre has not been tapped. Clearly if Eve also pos-
sesses the key then she can read the encrypted message that will follow, so we need
to be sure that this is not the case. Consider what will happen if Eve tries to measure
the photonic qubits herself to try to learn the key. Like Bob, she will have no way of
knowing which basis to measure in, so will have to make a random selection. Half
of the time she will choose the incorrect basis. Half of the times that she measures
in the wrong basis, Bob’s measurement of the state when he receives it will give the
wrong result (i.e. not the state that Alice sent). Therefore there will be a 25% error
rate in Alice and Bob’s shared key.

Security check

To ensure that no eavesdropping has occurred, Alice and Bob should perform a secu-
rity check. Here, they choose some fraction of the key, say 5%, to be a used in the test.
They take this fraction of the key bits, chosen randomly, and publicly compare them.
If too many of the compared bits disagree, then the protocol is abandoned — we can-
not guarantee that no one is eavesdropping on the line. The question that naturally
presents itself here is “how many disagreeing bits is too many?” — a matter that is
addressed in Section 3.1.3. An important extension of BB84 is the variation known
as efficient BB84. Note that in the standard version of BB84, half of the photons that
are sent will not be used to distil a key, since Alice’s and Bob’s bases will not match.
Lo et al. showed in [LCA05] that Alice and Bob do not have to use each basis half of
the time. They can, for example, agree to use the Z basis 90% of the time, and the X
basis 10% of the time. They will therefore agree on a basis 82% (= 0.92 + 0.12) of the
time. In order to ensure that Eve cannot take advantage of this by measuring every
incoming photon in the Z basis, Alice and Bob must then check the error rate in the
Z basis and X basis separately. Only if both error rates pass the security check will
the protocol proceed. Note that they cannot use, for example, just the X basis for a
security check. If this was the case, then Eve could simply measure all states in the
X basis, and learn 50% of the key whilst causing no errors.

An alternative efficient form of BB84 involves Alice and Bob again predomi-
nantly sending and measuring states in the Z basis. However, in this version, they



3.1. Quantum cryptography protocols 37

π

FIGURE 3.2: A linear optical system to convert between a
polarisation-encoded photonic qubit (incoming on the left) and a
qubit encoded in a phase shift between the early- and late-arriving
modes of a photon (outgoing on right). Diagonal lines are beam split-
ters, and diagonal lines in boxes are polarising beam splitters. The
black box is a quarter-wave plate, that maps |V〉 7→ i |V〉. The marked
box applies a constant phase shift of π. Implicit in the linearity is
the fact that this system can be reversed, and phase-encoded photons
send right-to-left to encode their qubit in a polarisation basis.

would only use the Z states for generating the key. The X basis states would then be
used to check for the error-rate. This is the scheme used in experimental implemen-
tations such as [RLY+17].

Non-standard attacks

At this point one may notice that there are attacks which Eve may carry out that
do not involve covertly intercepting the photons. These may be divided into two
categories. The first is known as man-in-the-middle attacks [WWLH09]. This is where
Eve impersonates both Alice and Bob. That is to say that Eve sits between the le-
gitimate parties, and runs BB84 with both of them. In order to avoid this threat, it
is necessary that the classical channel over which they communicate is authenticated.
Unfortunately, quantum authentication systems require Alice and Bob to initially
share some secret! It is therefore often said that QKD is more accurately called a key
expansion procedure, rather than a key generation procedure. Those interested in this
topic will find a great body of literature available, with theories and experiments
often developed in concordance with QKD. These may involve protocols that acts as
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a guarantee to existing QKD protocols [BCG+02, CS01], as well as quantum direct-
communication protocols, that allow for the direct sending of an authenticated en-
crypted message, and not just a key [DLL03, LLY06].1 The second non-standard
type of attack is known as a side-channel; a category which includes a wide variety
of different types of attacks. We discuss this in length in Section 3.1.5.

3.1.2 Ekert 1991

In 1991, Arthur Ekert devised a new QKD protocol [Eke91], often referred to as E91,
that uses principles of entanglement in a rather elegant manner to guarantee its secu-
rity. The process of sharing a single secret bit begins by Alice generating a photonic
two-qubit state in a single, publicly known Bell state, say |Φ+〉. As with BB84, this
may be encoded in the phase or polarisation degrees of freedom of the photon. One
photon from this pair is retained, and one is sent on to Bob. Alice and Bob both then
choose a random basis in which to measure. In Ekert’s original paper, 3 bases were
used. However, the principle works equally well with 2 bases (Z and X), which al-
lows for a more direct comparison with BB84. If (and only if) Alice and Bob share a
perfect |Φ+〉 state, then they will get the same outcome whenever they both measure
in the same basis. This shared result will then form a single, shared key bit.

A key difference between E91 and BB84 is in the nature of the security check.
Here, Alice and Bob perform a Bell test on a subset of the pairs. This is a statistical
test that aims to show that the states cannot be accurately described by local real
variables, and so must be quantum-mechanically entangled.

1Whilst the idea of direct secure communication may seem promising, note that QKD has a very
prominent advantage. We can take advantage of the fact that no individual bit corresponds initially to
any bit in the message. We may arbitrarily shuffle the key with no loss of message meaning or security.
Similarly, we may shorten the key to boost security, as explained in Section 3.1.3. However, this is
clearly not possible with direct communication, where every bit is important.
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CHSH test

The CHSH test (named after John Clauser, Michael Horne, Abner Shimony,
and Richard Holt) is a measurement of the CHSH statistic, SCHSH, for a set
of identical pairs of qubits. This is given by

SCHSH = E(ZA, ZB)−E(ZA, XB) + E(XA, ZB) + E(XA, XB), (3.3)

where E(A, B) is the expected product of outcomes when Alice measures in
basis A and Bob measures in basis B, and the outcome results are mapped to
{+1,−1}. Here, we also define ZB, XB to be rotated in the Z, X plane by an
angle of π/4 with respect to ZA, XA. For a classical state reproducible by lo-
cal hidden variables (such as a product state) this is bounded by |SCHSH| ≤
2. For entangled states, this bound is “violated,” and for maximally entan-
gled qubit pairs it saturates the quantum bound of |SCHSH| ≤ 2

√
2. Like

the entanglement of formation, the Bell statistic therefore gives a measure
of how entangled a pair of modes are.

In a way similar to the measurement of error rates in BB84, this ensures that no
measurement has been made of Bob’s particles before they reached him. However,
the CHSH test makes it clear that the security test is in fact far stronger than simply
excluding the possibility of malicious measurements. We also want to be sure that
Eve has not entangled Bob’s photon with her own, which she will then measure at
a later time. Here, Alice and Bob are protected by the concept of the monogamy of
entanglement (discussed in Section 2.2.3). Therefore, even if the entanglement is not
perfect (due, perhaps, to errors accrued in transmission or detection) Alice and Bob
can use distillation to increase the security of their communication, at the cost of
reducing the number of bits they share. This trade-off between security and bit rates
is fundamental to cryptography, and is something that we will encounter throughout
this thesis in different guises.

Equivalence with BB84

Upon first inspection, it may seem that BB84 and entanglement-based systems (of
which E91 is one example) are two completely separate protocols that require dis-
tinct analyses. However, it was noticed by Shor and Preskill [SP00] that one may
be reduced to the other, allowing them to prove the security of BB84 by considering
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the behaviour of entanglement distillation.2 To see this duality, one should first note
that the local density matrix of a photon in flight from Alice to Bob is the same in
both protocols. That is to say, an eavesdropper who intercepts a photon and does
not make a measurement will only be able to say that the state of the qubit encoded
by it is 12/2. Even if she measures it and concludes that its post-measurement state
is, for example, |0〉, this will tell her nothing about whether Alice and Bob are using
states with pre-determined orientations, as in BB84, or entangled pairs, as in E91.

Therefore, if Eve does not know this, then the physical process that is carried
out is also the same from Bob’s perspective. In either case he chooses a random
basis and measures the photon. As for Alice, we can assume that for both BB84
and entanglement-based QKD, she produces a |Φ+〉 state. If she is using BB84, her
next step will be to decide on a basis. She will then measure her part of the state,
which will make the “decision” for her as to whether to send a 0 or a 1. Unlike the
basis choice, which may be heavily skewed one way by implementing efficient BB84,
the distribution of 0s and 1s should follow a 50/50 split, in order to maximise the
entropy (and therefore security) of the key. It therefore does not matter whether she
actually makes the decision of sending a 0 or 1, or has it made for her by measuring a
Bell state. The key difference between BB84 and entanglement-based QKD can then
be seen as whether Alice measures her part of the state before or after sending Bob’s
part to him. Since the non-local effects of entanglement are of a correlatory rather
than causal nature,3 this forms a loose equivalency between the two protocols.

We say a loose equivalency, since the analogy is incomplete — it does not deal
with any equivalency between the security tests, error corrections or privacy ampli-
fications. These, however, were dealt with by Shor and Preskill, who showed how
quantum error-correcting codes can be used to give a comprehensive proof of the
security of BB84 when identified with an entanglement-based protocol.

3.1.3 Security and secret key rates

Here, we want to examine the effects of different results from the security check
on the ability to securely communicate. In both this section, and for the rest of the
thesis, we will assume the BB84 security check is used, whereupon the number of
errors, ε, in the distributed key is measured, and used to determine whether or not
to proceed. By the argument at the end of Section 3.1.1, if Alice and Bob find an er-
ror rate of 25% or greater, then this would imply they might have an eavesdropper.
However, a more complete analysis reveals both a more pessimistic and a more opti-
mistic side to the equation. Pessimistically — the argument in Section 3.1.1 assumed
that Eve simply used a naïve strategy of measuring every single photon that she en-
countered. On one hand, she may attempt a more sophisticated measurement. She
may, for example, entangle many incoming photons together and then perform a

2Note that they formally prove an equivalence to the Lo and Chau protocol, [LC99].
3i.e. One cannot use entanglement to send information-carrying messages faster than the speed of

light, which would enable information to be sent backwards in time.
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joint measurement on them. On the other hand, she may not even measure all of the
photons. She may decide that only measuring half of the photonic qubits is enough
to satisfactorily inform herself of the secret key.

However, if Alice and Bob do believe that Eve has learned some of the key, then
they do not necessarily have to abandon the protocol. It is here that we return to the
trade-off between security and bit rates, for there are classical privacy amplification
protocols that Alice and Bob may carry out on their bit-string, b, returning a shorter
but more secure bit-string, b′. By “more secure,” we here mean has a lower mutual
information with Eve’s best estimation of the string.

Consider the following simple example protocol. Suppose Alice and Bob share
the bit-string, b. They also believe that Eve knows 50% of the bits, but they do not
know which bits. Let e be Eve’s best estimate for b. i.e. a string which is equal to b
on the marked bits, and random on the unmarked bits. An example of this is:

b = 0
•

0
•

1
•

0 0 0 1
•

0 0
•

1 1
•

0 0
•

1
•

0 0 1
•

0 1
•

0 1
•

0
•

0
•

1 0
•

0
•

0
•

1 1
•

1
•

0
•

0 1
•

1 1 0
•

0 1
•

1
•

0 0
•

0 1
•

1
•

1
•
,

e = 0
•

0
•

1
•

1 0 1 1
•

0 0
•

0 1
•

1 0
•

1
•

1 0 1
•

0 1
•

1 1
•

0
•

0
•

0 0
•

0
•

0
•

0 1
•

1
•

0
•

0 1
•

1 1 0
•

0 1
•

1
•

0 0
•

0 1
•

1
•

1
•
,

(3.4)

where a bullet mark indicates a bit known by Eve. Alice and Bob then do the fol-
lowing. They pair up the bits in their string; the first bit with the second bit, the
third with the fourth and so on. From each pair, {bi, bi+1}, they produce the new bit:
b′(i+1)/2 = bi ⊕2 bi+1 (equivalent to bi XOR bi+1). Eve will only know the value of this
new bit if she knows both bi and bi+1. Only for 1 in 4 pairs will both bits be known
by Eve. Therefore although the length of b′ is half of b, the proportion of bits known
by Eve has also been halved. In terms of mutual information, we can say that if p is
the proportion of the key bits that Eve knows for sure, then

I(b; e) =
1
2
[(1 + p) log2(1 + p) + (1− p) log2(1− p)] . (3.5)

The privacy amplification effected by the pairwise bit addition will therefore have
reduced Eve’s mutual information with the key from 0.189 bits to 0.046 bits.

We can therefore characterise the behaviour of a QKD system by the secret key
rate, K, which is the rate at which bits of a secure bit string are produced from oper-
ations on a possibly insecure string. Here, security is defined in the following box.
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Security definition

We quote here directly Gottesman, Lo, Lütkenhaus and Preskill: [GLLP04]

“A quantum key distribution protocol is secure if for any attack by Eve that passes
the verification test with a probability that is not exponentially small, with high
probability Alice and Bob agree on a final key that is nearly uniformly distributed
and Eve’s information about the final key is exponentially small. Here “exponen-
tially small” means bounded above by e−CN where N is the number of signals trans-
mitted in the protocol and C is a positive constant, “high probability” means expo-
nentially close to 1, and “nearly uniformly distributed” means with a probability
distribution exponentially close to the uniform distribution.”

If we let R be the rate at which Alice sends photonic qubits to Bob, known as
the raw rate, then we can say that K ≤ R, where the inequality is saturated only
in the case where the channel between them has perfect transmission, with neither
attenuation nor errors occurring to photons in transit. Note that some authors may
use slightly different definitions. These may include defining R as the rate at which
Bob receives photons, or defining the key rate as K/R. The shorter, secure key is
produced by performing some privacy amplification, either classical or quantum,
upon the received bits. An example of a classical algorithm is that which we have
just seen, whereby the information in multiple bits can be combined to form a more
secure bit. Privacy amplification may also be done at the level of the quantum state,
before measurements are made to determine their bit. If two entangled pairs are
distilled to produce a higher fidelity pair, then by the monogamy of entanglement,
this reduces the mutual information that Eve may have with any future bit string
produced from measurements made on the resulting state. The first proof that BB84
was secure against general attacks was provided by Lo and Chau [LC99]. This was
simplified by Shor and Preskill [SP00], in a paper in which they present the first
general expression for K for the BB84 protocol (or comparable entanglement-based
protocols) as function only of the overall error rate, ε. Here we present the results
of Gottesmann et al. [GLLP04],4 who extended the above work and analysed the be-
haviour for realisations of BB84 with basis-dependent imperfections — a distinction
that will be relevant for Chapter 4. Suppose that Alice and Bob have distributed
between them a series of noisy |Φ+〉 Bell pairs. They want to check the error rates to

4Note, this paper is an excellent and comprehensive resource for those wishing to understand the
security of the BB84 protocol.
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ensure that they actually hold perfectly entangled pairs, or equivalently, that no in-
terference has occurred in their transmission, whether malicious or accidental. They
choose some pairs, and they each measure their part in the Z basis, and calculate
ZA × ZB for these pairs. They say that the fraction of pairs measured in this basis
that give the result −1 is ε′bit, since this implies a bit-flip error has occurred and they
actually held |Ψ+〉 or |Ψ−〉. Similarly, the fraction for which XA × XB = −1 is called
ε′phase, since a phase error implies the presence of |Φ−〉 or |Ψ−〉. It can then be shown
that, for any δ > 0, there exists a number of bits n such that an error-correcting code
exists that enables secure communication at the rate

K = R
[
1− h2(εbit)− h2(εphase)

]
, (3.6)

where εbit = ε′bit + δ, and similar for εphase. This is then the highest rate at which
Alice and Bob can communicate without sacrificing security and allowing Eve a non-
negligible mutual information with the key.

Eq. 3.6 is an incredibly important equation for the field of QKD, and we will
use it heavily throughout this thesis. The function h2(x) is known as the binary
information. It characterises the amount of information in a string of 1s and 0s,
where a proportion x of them are 0 (or equivalently, a proportion x are equal to 1),
and is therefore equal to

h2(x) = −x log2(x)− (1− x) log2(1− x). (3.7)

Let us examine the terms in Eq. 3.6. The pre-factor of R is expected and simply
understood; when Alice sends photons at twice the rate, she and Bob will generate
a secret key at twice the rate. The interesting part is the amount by which the key
has to be reduced in order ensure that Eve does not know it. To understand this, we
should make note of another interpretation of h2(ε). It may be seen as a measure
of mutual information. If Eve tries to estimate a bit string, but makes an error when
estimating a fraction ε of the bits, then her mutual information with the string (as
may be calculated by the box in Section 3) is 1 − h2(ε). The two negative terms
therefore represent knowledge that has been lost to the environment, or equivalently,
to Eve (since we must make the pessimistic assumption that Eve is in control of the
whole universe outside of the QKD system). Specifically, it is the case that one term
(εbit) is the amount that has to be sacrificed to perform error correction on the bits
on which Alice and Bob disagree, and one term (εphase) is the amount that has to be
sacrificed to perform privacy-amplification.

The form of K given in Eq. 3.6 is relevant when Eve has some prior knowledge
about the choice of basis used by Alice and Bob, which makes it particularly relevant
for analysing side-channel attacks (Section 3.1.5 and Chapter 4). However, in many
cases we might make the usual assumption that Eve has no special knowledge about
the basis, and that the bit and phase error rates are equivalent. In such a case, Eq. 3.6
reduces to
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K = R[1− 2h2(ε)], (3.8)

where ε = εbit = εphase.
The secret key rate is the key figure of merit for any QKD protocol or form of

analysis. Discovering tight bounds on K is the aim of analytical theorists, increasing
the bounds is the aim of all protocol designers, and realising high K values is the
aim of all experimentalists and component manufacturers. It is a great convenience
often not found in other disciplines that a single variable is ubiquitous as a mea-
sure of performance across the field, and as such its usage may extend beyond the
strict application of QKD security measurement for which it was created. It is useful
for any situation in which one wishes to generate entangled pairs as fast as possi-
ble. Quantum key distribution is one such application, but this is also important for
quantum secure direct communication [LLY06], quantum secret sharing [HBB99],
quantum authentication [BCG+02] and quantum computation [BBD+09]. The secret
key rate provides a natural measure for judging the performance of entanglement-
distributing protocols that encapsulates both the rate of generation and the fidelity
of the states.

A commonly considered case is one where Alice and Bob share a set of entangled
Werner states, each with fidelity F. Then, 〈ε〉 = 2(1− F)/3. However, this leads us
on to a natural question: “what if ε 6= 〈ε〉?” This may be the case, since ε is the
fraction of errors that actually occur, and not the probability that such an error will
occur. Therefore, ε is actually a random variable. Fortunately, this does not greatly
affect the analysis as long as the following condition holds: For any δ > 0, there
exists a number of bits, n, such that the probability that the inequality ε < 〈ε〉+ δ is
broken is exponentially small in n. This condition holds in almost every conceivable
circumstance. Typically, QKD protocols are analysed in the regime where n → ∞,
in which limit ε′ = ε = 〈ε〉. Therefore, for the remainder of this thesis, we shall not
make the distinction between these subtly different quantities. We shall simply use
ε to mean the calculated probability that an error occurs.

3.1.4 Double-heralding

We have learned in the preceding subsections that entanglement states, and in par-
ticular Bell pairs, are of foundational importance to QKD. Once these entangled pairs
between communicating parties have been established, there are many routes that
we can investigate regarding ways to improve a QKD system, such as analysing
non-standard attacks (Chapter 4), extending QKD to more than 2 parties [WZM+16],
chaining together QKD systems into a repeater network for long-range communica-
tion (Chapters 5 and 6), or even reaching long ranges without the use of repeaters
[LYDS18]. However, the necessity for reliable, high-quality entangled pairs underlies
every other facet of QKD, and indeed quantum communication generally.
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FIGURE 3.3: The physical set-up for both Cabrillo et al.’s protocol,
and Barrett and Kok’s (double-heralding) protocol. Green dots are
photon emitters with level structures described in the main text, black
lines are optical channels, the red line is a beam-splitter, and blue
shapes are photon detectors.

Numerous methods for the creation of Bell pairs have been devised, although
many of these face significant issues. For example, the technique of Cabrillo et
al. [CCGFZ99] is a prototypical example of emission-based entanglement proce-
dures. Two atoms are prepared with 3 relevant electronic levels, which we will
denote |0〉 , |1〉 and |e〉. States |0〉 and |1〉 are ground-state levels with slightly dif-
ferent energy levels, and |e〉 is an excited level. Both emitters are initialised in state
|0〉, and then stimulated with a weak laser pulse that has a very small chance to
cause the transition |0〉 ↔ |e〉. An excited system will then relax back to a ground
state over a time-scale τq, causing the emission of a photon of either wavelength λ0,q

or λ1,q. The emitted photon(s) are sent through optical channels, through a beam-
splitter, and into two detectors tuned to detect photons of wavelength λ1,q. If a single
photon is detected, and the users are sure that there are no photons that were emitted
and not detected, then the resultant state of the system will be |Ψ+〉 or |Ψ−〉, depen-
dent on which detector detected the photon. The entanglement is generated by the
fact that the beam splitter quantumly-erases the information indicating the emitter
from which the photon originated. This set-up is illustrated in Fig. 3.3.

The drawback of this state is the fact that it relies on having a high confidence
in the claim that no other photons were emitted but lost. This confidence may be
increased by decreasing the laser power, which decreases the probability that a pho-
ton is emitted, εemit. The ratio of the probability for one photon to be emitted to
the probability for two to be emitted goes with 1/εemit. However, as εemit is de-
creased, so does the success rate of entanglement. The aforementioned confidence
may also be increased by ensuring that the photo-detectors used have extremely
high efficiency (probability that a single incident photon is registered) as well as per-
fect multi-photon resolution — a set of requirements beyond current experimental
capabilities.
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Shortly after the publication of this work, Bose et al. [BKPV99] showed the versa-
tility of emission-based quantum-optical protocols, by showing how this same tech-
nique can be used in order to teleport an arbitrary qubit state. However, this proto-
col suffers from the same drawbacks as the former. A protocol by Duan and Kimble
[DK03] improves upon this. It uses emissions into two different polarisation modes.
After passing these through a polarising beam splitter, it gives a Bell state when a
single photon is detected of each polarisation. This is not sensitive to detector in-
efficiencies, however it does rely on a very carefully constructed level structure. In
particular, it requires that there be four transition energies (two for each polarisa-
tion, and two for each emitter) that are perfectly degenerate. This also presents an
experimental challenge.

The process known as double-heralding [BK05] aims to address such shortcom-
ings. It is a protocol that allows for a Bell pair to be generated in a way such that
the fidelity does not rely on the detector efficiency, ηD or optical transmissivity of
the fibres, ηT (which will henceforth be referred to by single efficiency variable,
η = ηDηT), although as with the Duan-Kimble protocol, the success probability does
drop off quadratically with efficiency. Additionally, there is no trade-off between the
success probability and the fidelity. The fidelity’s independence of these quantities
allows double-heralding to produce Bell pairs that greatly exceed the fidelity thresh-
old of 83%5 required for secure communication through BB84. The high fidelity of
the states also allows this protocol be scalable. That is, many of them can be used in
conjunction and the error rates will not quickly compound to high levels, making
the protocol ideal for large-scale quantum technologies. As a result of its favourable
fidelity, double-heralding was used to generate entanglement for the first loop-hole
free test of Bell’s inequality in Delft [HBD+15], which was the first experiment to
prove conclusively that the correlations resultant from measurements of entangled
states cannot be explained with classical physics.

The protocol works as follows. Consider a photon-emitting system with two
low-energy states, |0〉 and |1〉, and an excited state |e〉. Examples of such systems that
exhibit such a structure are NV centres in diamond ([JGP+04] and Section 5.1.1) and
quantum dots with excess electrons [PBC+03]. These are constructed such that an
optical π pulse causes the transition of |1〉 → |e〉, whilst |0〉 → |e〉 is forbidden. The
energy gap to |e〉 should also be sufficiently large that the system can be considered
to be a qubit when unexcited. After excitation the system relaxes back to |1〉 over
a decay time-scale τq, emitting a photon into an optical cavity in the process. This
system is described by the Hamiltonian

Ĥ = ∑
j=A,B

[
gj

2

(
|1〉j 〈e| c

†
j + H.c.

)
− iκjc†

j cj

]
, (3.9)

5At which point 1− 2h2[2(1− F)/3] = 0. The quantity 2(1− F)/3 represents the probability of
making a bit error, averaged across Z and X basis measurements, for a Werner state of fidelity F with
respect to

∣∣Φ+
〉
.
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where gj is the Jaynes-Cummings coupling strength [SK93] between the |1〉i ↔ |e〉i
transition and corresponding mode of the optical cavity and κj is the energy of the
photons. We may express the decay constant in terms of these parameters as τq =

(κ −
√

κ2 − g2)−1 (where we have set gA = gB = g) [BK05].
In order to use this to establish a Bell pair, consider two emitters, each initialized

in the state |+〉 = (|0〉+ |1〉)/
√

2, giving an overall system state of

|ψ〉 = |+〉 ⊗ |+〉 ,

=
1
2
(|0, 0〉+ |0, 1〉+ |0, 0〉+ |1, 1〉) .

(3.10)

These emitters should both be stimulated by a π pulse as described above, and
any outputs sent through an optical channel and through a beam-splitter. This round
of the protocol is considered a success if we detect exactly one photon. The experi-
mental set-up for this is the same as for the Cabrillo protocol, and is also shown in
Fig. 3.3.

If it were somehow the case that η = 1, and we were sure that the detection of
one and only one photon implied the emission of one and only one photon, then our
system would now be in state |Ψ+〉 or |Ψ−〉 (dependent on the detector that clicked).
Similar to the case of Cabrillo’s protocol, the beam-splitter would have erased the
information as to which emitter was the source of the photon, and the resultant state
would be a coherent superposition of both possibilities.

However, since in any real-world setting it is always the case that η < 1, es-
pecially when considering multiple-photon-counting applications, there exists the
probability that the state was mapped to |1, 1〉, and one photon was simply lost. The
detection of a single photon therefore implies the system is in the mixed state

ρ =
η 1

2 |Ψ+〉〈Ψ+|+ 2η(1− η) 1
4 |1, 1〉〈1, 1|

Tr
[
η 1

2 |Ψ+〉〈Ψ+|+ 2η(1− η) 1
4 |1, 1〉〈1, 1|

]
=

1
2− η

(∣∣Ψ+
〉〈

Ψ+
∣∣+ (1− η) |1, 1〉〈1, 1|

)
.

(3.11)

Therefore, after waiting a suitable length of time for any excitations to relax, we
apply a Pauli X gate to each emitter, mapping |0〉 ↔ |1〉, and again excite both of
them. If, after this second excitation and emission, we again measure a click in one of
the detectors, we know that we could not have had |1, 1〉 in the first round, because
that would map to |0, 0〉 in the second round, which will result in no photoemission.
Therefore, we will have projected onto the pure Bell state |Ψ+〉 (or |Ψ−〉, depending
on which detector clicked). If we fail to detect a photon in either step, both emitters
are reinitialized to |+〉 and the process is repeated until a connection is formed.

The greatest benefit of this method is that, unlike other schemes for remote entan-
glement generation, the fidelity of the final pair is not affected by attenuation in the
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channel or imperfections in the detectors. The fidelity is also completely unaffected
by the presence of multi-photon components (although the success probability is af-
fected). However, there are still ways in which the fidelity may be affected. Dark
counts may cause us to falsely believe that we had measured a signal emission, re-
ducing the fidelity. This is analysed in Section 5.3.1. Mismatching of the parameters
κ and g between the two emitters will mean that the photons retain an element of
distinguishability after the beam splitter, and so detection will result in imperfect
path erasure and again a reduced fidelity. Additionally there is the problem of deco-
herence of the emitters, which will be analysed further in Section 5.3 and Chapter 6.

3.1.5 Side-channels

In Section 3.1.3 we described how, by measuring the average error rate in a sample
of bits, Alice and Bob can ensure that their communication is exactly secure. If the
error rate is less than 11%,6 this is done by producing, from the raw key, a smaller
key that is completely secure. If the error rate is above 11% then the communication
is abandoned.7 Does this mean then that Eve is forever thwarted? It does not! As
we briefly alluded to earlier, the standard security proofs only hold for standard
attacks, where Eve intercepts the flying qubits and operates upon them. We must
assume that Eve is wily and cunning, and will seek alternative avenues of attack. . .

In general, a side-channel is any method of covertly learning secret information
that does not primarily involve directly attempting to read the transmitted signal.
This can apply to communication side channels (as we will focus on here), but
also to computational side-channels, where, for example, the information processed
by CMOS devices can be read by measuring their noise outputs [DV13, MPG05],
or even their temperatures [HS13]. The first modern cryptographical side-channel
that was known to be exploitable was the timing attack, demonstrated by Kocher
[Koc96]. Here, the runtime of key distribution algorithm (such as RSA) could be
measured and used to infer the content that was being transmitted.

6This is the value of ε for which K, given by Eq. 3.8, equals 0.
7The absence of a communication attempt is trivially secure.
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Historical side-channels

It is interesting to note here that just because a side-channel has been discov-
ered and protected against in one circumstance, does not mean that future
cryptographers will remember to do so. We say this because the funda-
mental notion behind Kocher’s attack (or rather, its reciprocal — that the
frequency of a process or message may disclose its content) was known
as early as World War II. When messages encoded by the enigma machine
were sent by the Axis powers, it was mandated that the same number of
messages be sent each day. Otherwise, an Allied force that intercepted them
may be able to discern the coming of a large offensive by an increase in
the frequency of messages, even if they could not decode them. This tale,
however, highlights an important maxim that should act as a warning for
all modern cryptographers: active defences against side-channels may them-
selves become new side-channels. Indeed it was the case that the Axis defence
against the variable-length-message side-channel itself became a source of
information leakage when it was combined with the weak point that un-
derlies every cryptographic system: human laziness. In one case, an Axis
soldier who was sending a message to fill the daily quota simply sent a
message that, when decrypted, consisted only of the letter “L” many times.
Attentive cryptographers at Bletchley Park noticed that the coded form of
this message did not contain the letter “L,” since the enigma machine never
mapped a letter to itself. This oversight allowed the code-breakers to decode
other messages from that day [Thi16]. This also highlights how an encoding
system that misses out on cryptographic security by only a small amount,
where the entropy is slightly less than maximal, can still be exploited and
broken.

Moving specifically to quantum cryptography, side-channel attacks (SCAs) are
an important and active area of investigation. It is within this field that the discov-
ery of a side-channel could have the most devastating consequences, simply because
QKD is the only type of cryptography for which the protocols have information-
theoretic security against standard attacks, making SCAs necessarily the only av-
enue of attack for Eve. Mirroring the classical case, one of the first QKD SCAs
to be demonstrated was the timing attack [LLK07]. Shortly after this, Nauerth et
al. [NFSM+09] analysed information leakage in free-space QKD, noting that the spa-
cial and spectral distributions of pulses are possible avenues of attack for Eve.

One class of SCAs is known as photon-number-splitting attacks. These exploit



50 Chapter 3. Quantum communication preliminaries

the fact that the signals sent by Alice may often not be true single-photon states, but
instead weak coherent pulses with a low but non-zero probability to contain more
than one photon. By passing the flying qubits through a beam splitter, Eve could
measure one photon, and send the rest on to Bob who would receive them unaware
of the attack. This SCA has been comprehensively dealt with by the concept of de-
coy states, introduced by Hwang [Hwa03] and analysed by Wang [Wan05], amongst
others.

Progress has also been made in devising communication protocols that com-
pletely remove side-channels that target the physical devices involved. These fall
under the labels of measurement-device-independent QKD (MDI-QKD) [POS+15,
LCQ12, TYC+14] and fully device-independent QKD (DI-QKD)
[MPA11, BP12, Cur12]. While these eliminate a large class of side-channels, they typ-
ically do so at the expense of a much lower secret key rate and greater complexity.

In Chapter 4 we will examine the specific case of a side-channel attack known as
the Trojan-Horse Attack. It is there (particularly Section 4.1.2) that we will investi-
gate the effect that the presence of a side-channel has upon the key rate that may be
achieved.

3.2 Quantum repeaters

By now you should be convinced that quantum key distribution has great potential
to enable communication of unprecedented security. However, it has, in its current
form, a significant hurdle to overcome. The qubits of discrete-variable QKD are en-
coded in single photons, and I’m sure the reader will appreciate that single photons
are easily lost. When photons are sent down an optical fibre, they typically suffer an
attenuation that is exponential with distance. That is to say, the probability that the
photon will not have been lost after travelling a distance L is given by exp(−L/Latt),
where Latt is the attenuation length of the fibre, typically around 25km [KLH+15].
Therefore, when Alice and Bob wish to communicate over a distance of more than
a few tens of kilometres, their raw key rate will soon drop to zero if the photons
are sent directly. More importantly, in many quantum communication and entan-
glement generation protocols, the probability that an error will accumulate will in-
crease with distance, especially if imperfect local operations are used. We therefore
require a system that can fulfil two roles: to boost the raw key generation rate, and to
ensure that the error rate stays below the communication threshold of 11%, or some
other cut-off that the experimenters desire.

In classical communication, this is overcome with the use of a repeater. This
is simply a station positioned between Alice and Bob that amplifies the incoming
signal. When we are using quantum signals, however, this cannot be done. This is
due to the no-cloning theorem (fundamental concept conceived in [Par70], described
more explicitly in [Die82, WZ82]), which states that it is impossible to create a perfect
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copy of an arbitrary and unknown quantum state.8 Instead, the channel is divided
up into multiple sections, with each section bookended by a quantum repeater. These
quantum repeaters should extend the range of the signal, without directly cloning
and amplifying it.

8The teletransportation paradox is an old problem in the philosophy of identity, to which we may
consider this fact a partial solution. It considers a future world where fully-functional teleporters have
been developed. These act by deconstructing a person at one location and reconstructing them atom-
by-atom at another from a reserve bank of carbon, nitrogen, oxygen atoms etc. If I am identified with
my material form, then I should have no problem with this. From my perspective it should be no
different to going to sleep and waking up — the clone will experience a continuation of consciousness,
and will in all senses, be me. Derek Parfit [Par84] asked what should happen if the machine scanned
the location of every atom in my body, but then malfunctioned: it might fail in deconstructing me, but
succeed in building my clone, leading to two simultaneous copies of me. We should then ask where
my sense of self resides. If I am my material form, then the clone is just as much me as the original. By
this argument, the original should have no particular qualms with being murdered after stepping out
of the faulty teleporter. After all, he was going to be deconstructed anyway! However, we can imagine
that most people will feel uncomfortable with this step. The no-cloning theorem could address this
quandry. If the human brain relies on coherent quantum processes and superpositions (a contentious,
but plausible and seriously considered hypothesis, [Pen91]), then any fully faithful teleporter system
would have to teleport these coherently. While it is well known that an arbitrary unknown state may
be teleported, it can not be cloned. Therefore, the paradox of two perfect copies of myself (and so two
copies of my self ) can never occur, if the teleportation is faithful down to the quantum level.
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No-cloning theorem

This proof is found in Nielsen and Chuang [NC02], page 24.
Suppose there existed a “state-cloning unitary operation,” ÛSC, that mapped

ÛSC (|ψ, 0〉)→ |ψ, ψ〉

for all |ψ〉 in the qubit Hilbert space. Consider generally that
|ψ〉 = α |0〉+ β |1〉. Since unitary operations act linearly on inputs,

ÛSC (|ψ, 0〉) = αÛSC (|0, 0〉) + βÛSC (|1, 0〉)
= α |0, 0〉+ β |1, 1〉 .

However, the above expression is not the same as the cloned state
|ψ, ψ〉 = α2 |0, 0〉+ β2 |1, 1〉+

√
2αβ |Ψ+〉. Therefore, there cannot exist a

unitary that clones an arbitrary quantum state. The more general proof that
there exists no quantum circuit (whether unitary or not) that achieves this
task is given on page 530 of Nielsen and Chung [NC02].
Note that the unitary can always clone classical information. If the qubits
are in fact bits, and α, β ∈ {0, 1}, then the unitary clones the state perfectly.
It is the quantum nature of the qubit that prevents cloning, not the nature of
the task itself, as evidenced by the fact that classical repeaters are far simpler
to create than quantum repeaters.

It is critical that the quantum repeater (or hereafter simply a repeater for short)
is able to increase the range of the communication without learning the state or the
value of the bit. This is because we do not want to have to trust the intermediaries
— the protocol is most secure when the amount of trust required of external parties
is at a minimum. A long quantum network for intercontinental communication may
require dozens of repeater stations, each one of which would become a target of
attack if they had access to the key.

The most basic form of repeater is based on entanglement-swapping. The dis-
tance between Alice and Bob is divided into NS sections, where each section consists
of a set of optical fibres linking Alice to a repeater station, a repeater to another re-
peater, or a repeater to Bob. The distance between each pair of stations is assumed to
be a constant L0 for simplicity. Alice and Bob will use this network, along with the
E91, or entanglement-based, protocol (Section 3.1.2) in order to generate a key. Each
section consists in fact of a number of parallel optical channels, linked to a quantum
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memory at either end. Some elementary entanglement-generation protocol should
then be chosen, and used to attempt to generate entanglement between each pair
of memories, using quantum signals transmitted by photonic states sent along the
fibres. At some point after at least one of the entanglements on either side of a sta-
tion have been established, entanglement-swapping operations at the station then
connect together these states to form entanglement over a longer distance. When
such swapping operations have completed at all stations, then Alice and Bob should
share a Bell pair, which can be measured to produce a Bell pair. From this general
model, a number of different repeater proposals have been developed. These may
vary depending on the specifics of their implementation. For example, different
proposals may implement different measures to reduce errors, such as distillation
[BDCZ98] or fault-tolerant encodings [LBSB13]. They may rely on different forms of
quantum memories, such as atomic ensembles [SSDRG11] or NV centres [NTD+16],
or different forms of initial entanglement generation [NTD+16].

3.2.1 Functionality

The way in which quantum repeaters can decrease Alice and Bob’s measured er-
ror rate requires us to examine more closely the specifics of a repeater protocol, so
we will leave that to Section 3.2.2. However, this basic model of an entanglement-
swapping repeater is sufficient to explain how they can be used to bolster the raw
key rate. The first way is by including redundancy in the number of connections
between each pair of stations. Suppose that each section is spanned by q pairs of
memories. The probability that any one section will produce at least one Bell pair
that spans it in after one round of sending photons9 is given by 1− (1− e−L0/Latt)q.
If at least one Bell pair is generated on each side of a repeater, then that repeater
can simply apply entanglement-swapping to the appropriate memories, and form a
longer connection. Therefore the probability that an end-to-end connection is estab-
lished in the first round of photon-sending is

p(conn with repeaters) =
[
1− (1− e−L0/Latt)q

]NS
(3.12)

If we were not using repeaters, but instead had q optical channels spanning di-
rectly from Alice to Bob, then the one-shot connection probability becomes

p(conn without repeaters) = 1− (1− e−NS L0/Latt)q. (3.13)

9This process takes a time t = 2L0/c. The photonic qubits must be sent from one station to the next,
taking a time L0/c. Those stations must then send messages back the other way to indicate whether
the qubit was received or lost, so the “sender” station knows whether to send another one.
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Since p(conn with repeaters) ≥ p(conn without repeaters),10 a network which
is divided up into sections which are entangled individually has a higher proba-
bility of producing an end-to-end connection than a network which only involves
end-to-end channels, even when those channels also include redundancy. We can
see that the redundancy plays a part here by setting q = 1, for which we recover
p(conn with repeaters) = p(conn without repeaters) = e−NS L0/Latt .

The second way in repeaters may bolster the raw key rate is by their use of mem-
ories to store existing entanglement while other parts complete. We can consider a
repeater network with q = 1, and ask, what is the probability that an end-to-end Bell
pair will have been established after t time-steps, where one time-step is the time
taken to attempt an entanglement creation operation over one elementary section.
We can assume here that entanglement-swapping takes no time, which is a good
approximation when considering the time-scales involved. We should also assume
as a first approximation that the fidelities of quantum states held in the quantum
memories do not decay over time.

If the channel is again divided into NS sections with no redundancy, then at time
t Alice and Bob will share a Bell pair at time t with probability

p(conn with repeaters) =
[
1− (1− e−L0/Latt)t

]NS
. (3.14)

The comparable channel without repeater stations will produce entanglement in
the same time with probability

p(conn without repeaters) = 1− (1− e−NS L0/Latt)t. (3.15)

We can show that p(conn with repeaters) ≥ p(conn without repeaters) by direct
comparison with Eqs. 3.12 and 3.13, but with q replaced by t. The two cases may
then be seen as expressing the spatial and temporal faces of a single conceptual ad-
vantage.

Of course, this duality only truly holds in a theoretical sense, and real-world
considerations will break the symmetry. For example, relying on a large spatial re-
dundancy requires us to be in possession of a large number of qubits, which may be
expensive to buy or produce. There is also the non-trivial issue that atomic qubits
at a repeater must be arranged in some kind of physical spatial formation. Some of
these qubits will therefore be adjacent, and some may be far apart, which may cause
issues as q grows very large.

There is also the issue of the compounding infidelity resulting from local oper-
ations. The quantum operation that a repeater applies to a pair of qubits to cause
a swapping of entanglement would have some probability to fail, and thus using

10This is difficult to prove by a manipulation of the equations, but easy to prove when you consider
their interpretations. We may consider the repeater-less system as a special case of the repeater net-
work, but one where the entanglement swaps that may be made at a given station are fixed. i.e., the
repeater may only connect the topmost quantum memory on its left with the topmost memory on its
right, and the second memory on its left to the second memory on its right, and so on. Clearly when
we remove this restriction the connection probability can only increase.
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more repeater stations will lower the fidelity of the final state. However, even if the
local operations are perfect, the entanglement-swapping operations between two
states that are approximately Bell-pairs can amplify any imperfections in them. For
example, suppose a repeater section wanted to connect a Werner state on its left
to a Werner state on its right, each with fidelity F. If this is done by the standard
method of applying a CNOT gate to the middle states, then measuring them in the
X basis (as discussed in Section 2.2.3), then this would result in a state with fidelity
(4F2 − 2F + 1)/3, which is less than F when F > 0.25. 11

These issues that affect the final fidelity of the quantum states shared by a re-
peater network, or equivalently the security of the bit strings distributed using them,
are exacerbated by the probabilistic nature of the initial entanglement-creating oper-
ations between the stations. We have already seen how a repeater can help overcome
this, by the use of quantum memories, although such memories are not perfect. Typ-
ically, the probability that they will not have accrued an error decays exponentially
with time, meaning the states that they store will have a fidelity of

F =
1 + 3e−t/τ

4
, (3.16)

for some coherence time τ. Therefore, while the probability of establishing entan-
glement increases with additional sections, the fidelity of the resulting states may
not. We therefore must use the secret key rate which acts to combine both metrics, to
determine what set-up is best for any given set of experimental parameters. This is
particularly true when each elementary entanglement-creation operation succeeds
with a low probability, since the memories will have a high probability of accumu-
lating an error before the protocol completes.

This presents a difficulty in our analysis. We cannot say that some protocol com-
pletes in some exact time, with some exact error rate. Instead we will have a distri-
bution of completion times, and at each completion time we will have some distri-
bution of error rates. Due to the highly non-linear nature of many of the equations
involved in proving the security of BB84, as well as the need to give lower-bounded
guarantees on secret key rates and not simply averaged values, we cannot ignore
such statistical contributions to the behaviour of the protocols. In Chapter 6 we shall
develop the statistical tools required to describe this, and use them to analyse this
interaction between memory lifetimes and entanglement success probabilities in de-
tail.

11If the Werner state is caused by a stochastic loss of information from an ideal version of a target
state, then the fidelity will not drop below 0.25. This is because the completely mixed state has a fidelity
of 0.25 with respect to each Bell state.
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FIGURE 3.4: Innsbruck quantum repeater scheme with 2 sections.
Part 1 shows a situation where some pairs of memories have estab-
lished entanglement, where A is Alice, R is a repeater and B is Bob.
Circles show quantum memories dotted lines show no entanglement
and solid lines are successful entanglement connections. In parts 2–3,
the right-hand section has completed, and distilled down to 2 pairs.
The thickness of the lines between memories shows the fidelity of that
entangled state. In parts 4–5, the left-hand section is also distilled and
these states are connected to the right-hand pairs by entanglement
swapping. In part 6 the two pairs between Alice and Bob are distilled
again to form a single high-fidelity pair.

3.2.2 Innsbruck protocol

The first quantum repeater protocol to be devised was that of Briegel et al. in 1998,
[BDCZ98], which we shall refer to throughout as the Innsbruck protocol. The funda-
mental idea is the same as with many repeater proposals. This is illustrated in part
1 of Fig. 3.4.

When the entangled states that bridge a given section have all established, then
these are distilled down to a smaller number of higher-fidelity states (parts 3 and 4
of Fig. 3.4). The sections are then arranged into pairs, which are connected together
by entanglement swapping, to form entangled pairs over a distance 2L0. We may
consider each pair of sections as then a higher-level “section” in its own right, since
it is now pairs of sections that are bridged by entangled pairs. These states are then
again distilled, and the new higher-levels are paired up and connected by entangle-
ment swapping, forming new “sections” of length 4L0. The distance that is spanned
by any one Bell pair therefore doubles with each round of distillation and entan-
glement connection. Note that the inclusion of distillation is critical here. Without
it, the repeated use of entanglement-swapping operations (whether perfectly faith-
ful or not) would soon result in the fidelity of Alice and Bob’s final state to drop to
useless levels.
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3.2.3 Other repeaters

The system described above, where quantum memories stationary in a repeater
node are used to interface with flying qubits before applying entanglement-swapping,
is possibly the simplest and most well-known general model of a quantum repeater.
Our own protocol, described in Chapter 5, falls into this category. In addition to
other protocols already mentioned, one noteworthy pioneering example is the DCLZ
protocol [DLCZ01]. Here, they give one of the first full operational descriptions of a
quantum repeater, involving atomic ensembles to interface with the photonic qubits.
They also highlight another explanation for the ability of a quantum repeater to ex-
tend the range of communication: It is noted that a repeater network between Alice
and Bob may be thought of as a single quantum channel, but one that features mea-
surements of the qubit states along the way. In a way analogous with the quantum
Zeno effect [IHBW90], these repeated measurements act to reduce the uncertainty in
the state and extend the range of its information.

The full gamut of quantum repeater protocols extends to ideas outside the basic
model we have described here. Some of these aim to overcome certain current exper-
imental shortcomings, while others go in the opposite direction, aiming to deliver
higher secret key rates, but at some point in the future when experimental capabili-
ties have caught up with the demands of the protocol. However all of them broaden
our understanding of what is and what may be possible with quantum technologies.
We briefly discuss two of these here, while others are discussed in Section 5.5.

Coherent light repeater

In Section 3.1.5 we highlighted how photonic pulses containing more than one pho-
ton could be exploited by Eve to learn the key without alerting Alice and Bob. As
such, the signal pulses in such a protocol are typically limited to having an average
photon number of almost exactly one. Unfortunately, this means that the signals are
easily lost. The team of van Loock et al. [VLLS+06, vLLMN08] went instead in the
other direction, and suggested a quantum repeater protocol that uses bright coher-
ent pulses of light. They call it a hybrid repeater, since it in fact makes use of both
discrete and continuous quantum variables.

Here, the flying qubits are not encoded in a 2-dimensional Hilbert space at all.
Instead, they are encoded in the phase of a coherent state, that is rotated conditional
upon the qubit state of a memory. Given a qubit state at one station |+〉 and a
coherent state |α〉, the resultant state would be transformed by a phase shift of−θ as

Uθ

[
1√
2
(|0〉+ |1〉) |α〉

]
=

1√
2

(
|0〉 |α〉+ |1〉

∣∣∣e−iθα
〉)

. (3.17)

This goes on to another station where it interacts with another qubit in a similar
way. After applying a final phase shift of +θ, the resultant state will then be
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|ψ〉 = |Ψ
+〉 |α〉√

2
+
|0, 0〉 |eiθα〉+ |1, 1〉 |e−iθα〉

2
. (3.18)

Therefore, if one can perform a measurement (such as a homodyne detection) that
can distinguish between an un-rotated coherent state, and one rotated by ±θ, then
a measurement outcome indicating no rotation will project onto the maximally-
entangled Bell pair.

This protocol has the advantage that it does not rely on single photons, therefore
has the potential to extend to further ranges than single-photon-based networks.
However, its communication efficiency suffers due to the fact that coherent states
are not perfectly distinguishable, and large quantum-conditional rotations are diffi-
cult to achieve in practice. This leads to a situation where the maximum achievable
fidelity for the generated Bell pairs is only around 80% (and depends on the detector
efficiency), and the maximum success probability is just over 50%. To help abate
these difficulties, the authors suggest using long-lived nuclear spins as quantum
memories, which we discuss in Section 5.1.1.

We note here that the primary issue with this protocol is the low fidelities it cre-
ates, which are just on or below the minimum fidelities required by BB84 (F = 0.8
gives an error rate of 13% for Werner states). It is therefore likely that an increase in
the fidelity of the generated Bell pair would result in a greater secret key rate, even
if it came at the expense of a lower success probability. If we first put aside issues
of technical capability, one way in which this could be achieved is by unambigu-
ous state discrimination. Since we are only looking for the θ = 0 result, we could
construct a POVM with two measurement operators:

ÊX = |⊥〉〈⊥| ,
Ê× = 1− |⊥〉〈⊥| .

(3.19)

Here, |⊥〉 is a vector that is constructed to be orthogonal to both
∣∣e+iθ〉 and

∣∣e−iθ〉. If
the optical state is projected onto this projector, we know that the qubit state cannot
be either |0, 0〉 or |1, 1〉, and so must be |Ψ+〉. This will have a success probability
of |〈α|⊥〉|2. However, the difficulty of this method lies in constructing the state |⊥〉,
both mathematically and physically.

All-optical repeater

This is a proposal by Azuma, Tamaki and Lo [ATL15] that aims to remove the need
for quantum repeaters altogether. Here, they introduce the innovative idea of per-
forming some of the entanglement-swapping before the long-range entanglement
generation. Here, the repeaters are divided up into two types — senders and re-
ceivers. The senders prepare 2m loss-tolerant qubits,12 an act which effectively acts

12A loss-tolerant qubit is one encoded in many photons, in such a way that the information can be
recovered if some of them are lost. See [VBR06] for an example.
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as a pre-prepared entanglement-swapping. Each of these is entangled with all other
such qubits in the station, and each one is also entangled with another qubit known
as a second-leaf qubit.13 They then choose m of the loss-tolerant qubits and their asso-
ciated second-leaf qubits, and send them to the receiving station on their left, with
the remaining being sent to the station on their rights. Upon receiving these, the re-
ceiver stations perform entanglement-swapping on the second-leaf nodes, and then
apply Y measurements in the appropriate place to remove extraneous qubits from
the network.

This has the advantage of not relying on quantum memories. Any protocol
which removes some component that was previously thought to be fundamental is
one that holds the potential to enable a great advance in the field, since it eliminates
an entire set of experimental design requirements. However, in this case, it seems
that such a reduction in memory requirements has been met on the other side by
an increase in entanglement-construction requirements, since the protocol involves
very complex entangled photonic structures. Whilst significant progress has been in
producing complex entangled states, with 6-photon GHZ states14 having been made
[LZG+07], and well as atomic entangled structures of up to 3000 atoms [MZH+15],
it remains to be seen whether the photonic structures required here can be produced
with a reliability that gives them an advantage over memory-based approaches, es-
pecially given the advances in nuclear-spin based memories (Section 5.1.1).

13This multi-particle entanglement is meant in the sense of graph-state entanglement as described
in Section 2.2.3, and does not conflict with monogamy of entanglement.

14Of a form proportional to |0 · · · 0〉+ |1 · · · 1〉, and equivalent by the application of local unitaries
to the complete graph state.
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Chapter 4

Defending against the
Trojan-Horse side-channel attack

In Section 3.1.5, we introduced the idea of a cryptographical side-channel attack
(SCA), and highlighted the danger that they can pose to the ability to securely com-
municate. One such SCA that has attracted recent theoretical [GFK+06, DLZZ05,
LCW+15] and experimental [JSK+15, JAK+14, SRK+15] attention is the so-called
Trojan Horse Attack (THA). Here, Eve will tap into the optical channel that Alice and
Bob use to communicate. She will then send her own optical state into Alice’s sys-
tem, whereupon it will reflect off the same apparatus used to encode the legitimate
photonic qubits. Having picked up some information on the encoding of the latest
quantum state that Alice sent, it will return out and be measured by Eve. Eve will
then use the result of this measurement, possibly combined with some operation on
the legitimate qubits, to make a best estimate of the state that Alice sent to Bob, thus
giving her some non-negligible information mutual with the key.

This attack has previously been analysed by Lucamarini et al. [LCW+15] They
assume that Eve uses a coherent state (Section 2.1.4) to probe the system, and de-
scribe using a one-way attenuating filter at the entry-point of Alice’s apparatus as
a defence. The effect of this is to absorb the majority of light that is sent into the
system, such that Eve receives far less than one photon back per attempt, reducing
her ability to estimate the key bit. They make use of the theoretical framework of
Gottesman et al. [GLLP04] to get an expression for the rate at which Alice and Bob
can generate a secret key in the presence of such an attack. In this paper we make
use of this same framework, but extend the range of powers of both Eve and Alice.
The chapter is organised as follows. After discussing a few of the necessary prelim-
inary notions, we begin in Section 4.1 by describing and analysing the effect of Eve
performing a THA on the system, allowing her to use any Gaussian state including
multimode entangled states. We prove that the (separable) coherent states are opti-
mal amongst this class. As part of this analysis, we do not make the assumption that
Alice’s system is noise-free. In particular, we assume that there may be a thermal
noise component to Alice’s emitted signal. We analyse the effect that this can have
upon the secret key rate, but we do so from the position of the strong assumption
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that Alice can control the average photon number of the thermal noise in the appro-
priate mode. We will see that this can be used as a defence in itself, and can more
than double the range over which a QKD system can securely communicate. We do
note, however, that this assumption may be a little strong for some readers’ tastes1

In this case, we are careful to highlight the results that follow from the first assump-
tion but not the second. i.e. the case where Alice’s system and her signal mode are
not guaranteed to be noise-free, but she has no control over this noise.

Motivated by the revelation that entanglement does not assist Eve when using
Gaussian states to attack the system, in Section 4.2 we restrict Eve to separable states.
We derive a bound on the information that Eve may learn about the key when we
allow her to use any separable state. Finally, in Section 4.3 we describe an active
defence system that may be used in place of an attenuating filter. This relies on the
causing Eve’s THA light pulse to undergo many reflections before being returned.

In this work we will be assuming that Alice and Bob communicate via BB84,
with qubits encoded with a phase-shift of the early mode of a time-bin-split photon,
where the qubit is encoded by the parameter θ (as shown in Fig. 3.1). It is this pa-
rameter that Eve wishes to estimate. In order to do this, she prepares her own state,
ρ. This is assumed to exist in the photonic Fock space of a single mode. The single
mode assumption is justified since we may say that Alice will filter out all frequen-
cies that are not equal to the one sent to Bob. It may also be assumed without loss of
power or generality to be pure.2 This state is sent into Alice’s system. Here it passes
through a filter which allows a fraction η � 1 of the light to be transmitted, resulting
in a state ρη . It then reaches the polarizing filter, where it evolves according to the
same Hamiltonian that encoded θ into the photon that was sent to Bob. That is to
say, it is transformed as follows:

ρη → ρθ
η ≡ R̂(θ) ρη R̂(θ)†, (4.1)

where R̂(θ) is the rotation operator on the Fock space of Eve’s photons, defined in
Eq. 2.25. After Eve’s state has picked up the phase information it returns to her. She
then performs some operation to try to make an estimate of θ.

1In particular, we must choose precisely the right frequency and time modes to fill with thermal
noise. We cannot fill every frequency in some range with a finite amount of thermal noise, since this
would require a total of an uncountably infinite number of photons, which would surely destroy the
system. Of course, Alice also cannot create a wave-packet that is infinitesimally narrow in frequency
or time, so she could probably get away with adding thermal noise that has a frequency that lies within
the spectrum of her signal if she wanted to ensure that Eve would not be able to perfectly separate her
signal and noise. However, a detailed analysis of this is beyond the scope of this work.

2Note that a mixed state cannot improve Eve’s predictive power. Suppose we have a state that is
the classical mixture of two states given by ρ = α |ψ1〉〈ψ1|+ (1− α) |ψ2〉〈ψ2|. Her resultant key rate
will be K = αK1 + (1− α)K2, where Ki is the key rate of the pure state |ψi〉. This is simply optimised
by α = 0 or 1, depending on whether K1 or K2 is larger. By induction, we can see that no mixing may
improve Eve’s key estimation.
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4.1 Gaussian-state attack

Attenuation-based defence systems, which aim to muddy the phase information on
Eve’s state by blocking most of the incoming attack state, have been previously anal-
ysed by Lucamarini et al. [LCW+15]. They show that in order to realise any appre-
ciable level of security, a very high level of attenuation is required. Specifically it
requires that Eve get back far less than one photon per attempt. We want to inves-
tigate whether it is possible to relax this requirement by implementing complemen-
tary security measures.

To this end, we will consider a system where Alice adds a small amount of ther-
mal noise with average photon number µT into the signal she sends out to Bob. Since
Eve taps into this same channel, some of this noise will also be picked up by Eve. It
will be combined with her returned state ρθ

η to produce the state ρθ
η,µT

.
When running a protocol such as BB84, Alice and Bob can only try to generate

secret key bits from the attempts where Bob successfully received a signal. So after
post-selecting on these bits Bob must receive at least one photon per bit generation
attempt. On the other hand, we may choose the strength of the attenuator such that
Eve receives much less than one photon per attempt. Therefore, if µT is less than
one, but comparable to the average photon number of ρη , then the addition of this
thermal noise is likely to affect Eve more than it affects Bob. Sections 4.1.2 and 4.1.3
quantify this.

4.1.1 State description

Here we will describe specifically how we construct ρθ
η,µT

from ρ, and how Eve
should choose ρ to maximise her knowledge of the key.

Firstly, it is clear that the choice of initial state ρ will have a significant effect
on Eve’s ability to discern θ. There are certain properties of this state that we can
identify that we expect to affect this in varying degrees. The property that may be
most apparent in its effect is that of the average photon number of the state. If Eve
sends in a single photon, then given a high amount of attenuation, she is not likely
to get much back and will not be able to reliably learn θ. On the other hand, if she
is allowed to send in an arbitrarily bright state with unbounded average photon
number it is clear that she will always be able to distinguish the different settings of
θ perfectly. Therefore, to be able to implement any QKD protocol, the first step in
protecting against a THA is putting some upper bound on the average number of
photons that may pass into the system. This may be done by way of some defence
such as an optical fuse [DCL91], which melts when sufficiently many photons pass
through it, or by identifying some other component which will be irreversibly dam-
aged when subject to a bright enough light [CRD03]. A more detailed examination
of the numbers and figures behind such defences may be found in [LCW+15], but
for our purposes we may simply assume that there does exist some bound N such
that 〈n̂〉ρ ≡ Tr [n̂ρ] < N.
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Another relevant property may be the purity of the state ρη after passing through
the attenuator. Most states will become mixed after undergoing loss, however co-
herent states (as used in [LCW+15]) will not. They are instead mapped to coherent
states with lower photon numbers. As a result of this, the loss does not introduce
any classical uncertainty into the estimation of the phase. It may also be the case
that entanglement assists the estimation, as is the case with entanglement-assisted
illumination [Llo08]. It is important that we search for the most powerful possible
attack that Eve may make, taking all of these factors into consideration. It is only
then that we may have confidence in our security proofs against the THA or other
SCAs.

We will consider the case where Eve may use any multi-mode entangled Gaus-
sian state. Since only one mode enters Alice’s apparatus, Eve needs only to use at
most one idler mode, which she retains as a reference [NC02]. This state is created
by applying a two-mode squeezer to the vacuum followed by a displacement on the
mode that enters Alice’s system (applying a displacement to the idler mode turns
out to have no effect on the amount of information that Eve may learn about the
key). Up to a change of variables in the squeezing and displacement parameters, this
setup is equivalent to all other combinations of Gaussian operations [Bra05], such as
applying single-mode squeezers and displacing before squeezing. This, therefore,
represents the most general Gaussian-state attack that Eve may make.

Eve’s initial state is then

ρ = D̂(α) Ŝ2(ζE) |0〉〈0| Ŝ†
2(ζE) D̂†(α), (4.2)

where D̂(α) is the displacement operator (defined in Eq. 2.24), Ŝ2(ζE) is the two-
mode squeezing operator (defined in Eq. 2.32) that operates on Eve’s probe and idler
modes, and |0〉 is the vacuum state. Without loss of generality we will let ζE be real.

As is typical, we will model the loss due to the attenuator as a beam splitter. A
fraction η is allowed to pass through to reach Alice’s apparatus, and 1− η is diverted
into an auxiliary environment mode.

The final ingredient to be included is the thermal noise. This may be produced
by heating up a portion of the optical fibre, so that Eve receives both her own pho-
tons that she sent in, as well as the thermal noise photons added by Alice. Here we
need some careful thought as to how exactly we will mathematically combine these
two states. In other works [LFU17], thermal noise has been added to a signal by
passing both the signal and the noise through a beam splitter. However, this does
not seem to us to be appropriate in this situation for the following reason. Suppose
the combined state is produced by passing these two states through a beam splitter
with transmissivity ηTh, so that ηTh = 1 means that the resulting state is entirely a
thermal state, and ηTh = 0 means it is all signal. This introduces a new variable into
the situation, which implies some degree of coupling between the thermal source
and Eve’s returned state. We want Eve to be oblivious as to the actual source of the
thermal noise, and simply consider it as a simultaneously arriving light source. In
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particular, if we let ηTh = 1 and µT = 0, we arrive at the rather paradoxical conclu-
sion that the signal has been completely overwhelmed by a thermal state containing
no photons. For a similar reason we cannot combine ρθ

η with a thermal density ma-
trix ρTh by way of a classical mixture such as p ρθ

η + (1− p) ρTh. As such, we expect
that the strength of the thermal noise should depend only on the single parameter
µT. In case the reader is not yet fully convinced that we might yet recreate these
same dynamics with an appropriately chosen beam-splitter, we show in Appendix
A that this cannot be the case.

A method for the proper treatment of constructing a combined state from multi-
ple simultaneously arriving photonic states was described by Glauber in his original
treatment of the coherent states [Gla63]. However, that method involved expressing
the states in a diagonal coherent basis (the so-called P-representation). Whilst this
is a powerful method, it results in an expression for the state that is no longer easily
analytically tractable (although it is possible to use this to numerically analyse the
effects of adding non-thermal noise). Since we are dealing here with Gaussian states
we shall take advantage of a nice property of thermal states: that they may be pro-
duced be taking the partial trace over one mode of a two-mode squeezed vacuum
with squeezing parameter ζT = arcsinh(

√
µT). Therefore, we shall model the addi-

tion of the thermal noise as the action of Alice passing Eve’s returning signal through
a two-mode squeezer with the vacuum, and discarding one of the resulting modes.
Note that she does not physically do this, it is only used to find the mathematical
form of the state. Within this framework, Eve should choose α and ζE to maximise
her mutual information with the secret key. The full set-up for the construction of
Eve’s state is illustrated in Fig. 4.1.

A great advantage of working with Gaussian states is that they may be com-
pletely characterised by their first and second moments. For an n-mode Gaussian
state let û be the vector of operators [x̂1, p̂1, . . . , x̂n, p̂n]

T.3 Then to each Gaussian
state, ρ, we may uniquely assign a pair (u, V) which we call the mean vector and
covariance matrix respectively, with elements defined by

ui = Tr [ρûi],

Vi,j =
Tr
[
ρûiûj

]
+ Tr

[
ρûjûi

]
2

− Tr [ρûi]Tr
[
ρûj
]

.
(4.3)

Let φ be the relative angle between the displacement and the squeezing param-
eters in the complex plane, µD = η |α|2 be the average photon number due to dis-
placement after loss, and ω = cosh(2ζE) be the normalised quadrature variance for
a squeezed vacuum state. It then follows from Eq. 4.3 and Eq. 4.2 that the mean
vector and covariance matrix for Eve’s returned states corresponding to θ = 0 and
θ = π

2 are as follows:

3Note, in many texts a different convention is used, where all position operators are listed first
before all of the momentum operators.
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FIGURE 4.1: Top: Schematic diagram illustrating the physical mech-
anisms that produce Bob and Eve’s states. The dotted line outlines
the “legitimate” part of the protocol, comprising the signal and the
thermal noise (dashed line), with the green box representing an at-
tenuator. Bottom: Circuit diagram showing the mathematical mecha-
nisms that produce Eve’s final state. Shown from left to right are the
effects of Eve’s squeezing, Eve’s state displacement, Alice’s attenua-
tor, picking up the phase information, and adding the thermal noise.
Double horizontal lines represent taking a partial trace over the rele-
vant mode.
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where A =
√
(1 + µT) (ω2 − 1) η and Z and X are the respective Pauli matrices.

4.1.2 Secret key rate

Recall from Eq. 3.6 that in vanilla BB84 with no threat of THA, the secret key rate is
given by K = R

[
1− h2(εbit)− h2(εphase)

]
, where one of these terms of h2(ε) is due

to Alice and Bob sacrificing key bits to perform error correction, and one factor is
due to them applying classical privacy amplification algorithms.

Due to the nature of the THA being a SCA, Eve’s attack will not affect the bit-
error rate measured by Alice and Bob. However, it will still clearly compromise
the security, so Eq. 3.6 must be modified. In particular we expect that the h2(εbit)

term representing the error correction should remain unchanged, since a properly
implemented SCA will not induce additional errors. However, Alice and Bob will
have to do additional privacy-amplification, so the h2(εphase) term will be modified.

The key rate for BB84 in the presence of an SCA was found by [GLLP04, Koa09,
TKI03]. They show that the effect of the SCA may be summarised by a quantity
known as the distinguishability, ∆. This is used to modify the error rate, ε, in the
privacy-amplification term to become an effective error rate, ε̃ given by the following
(which is proved in [LP07], Appendix A.):

ε̃(ε, ∆) = ε + 4∆(1− ∆)(1− 2ε)

+ 4(1− 2∆)
√

∆(1− ∆)ε(1− ε).
(4.5)

This means that we do not have to know exactly what Eve does with the states
and the information available to her. For example, she may perform a THA to try
to learn θ directly. Or, she might tailor her THA such that the measurement on the
returned state only reveals information about the basis that Alice has chosen. After
estimating this basis, she might then measure the flying qubit in that basis to learn θ

without disturbing the state. She might do some combination of these approaches, or
something else entirely. As such, it is of foundational importance to our analysis that
we have some way of quantifying the strength of a THA that only makes reference to
the state she sends out, not to what she does to the state she gets back, including any
measurement or series of measurements on any combination of the returned state
and flying qubits.

The distinguishability varies from 0 when all choices of θ are indistinguishable
from the point-of-view of Eve, to 1

2 when she can distinguish all settings with cer-
tainty. In practice, a value of ∆ much greater than 0 will result in a secret key rate
of 0, since it would require Alice and Bob to be sacrificing raw key bits for error cor-
rection and privacy amplification at a rate faster than they are being generated. This
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formulation of the strength of a THA in terms of ∆ puts a lower bound on the secret
key rate that Alice and Bob can hope to achieve. The distinguishability is given by4

∆ ≤
1−

√
F
(

ρ0
η,µT

, ρπ/2
η,µT

)
2

, (4.6)

where F is the quantum fidelity function, given in Eq. 2.34. Note that this is different
from the form given in [LCW+15]. There, they reduce Eq. 4.6 to a form involving the
optimal purifications of the two output states. Since they are using pure coherent
states, such optimal purifications are easily found. However, there exists no pre-
scriptive formula to find these for a pair of general mixed states, so we must use the
fidelity form of the distinguishability.

The rest of this section is dedicated to calculating an exact expression for ∆ for
the set of thermalised Gaussian states described above, and section 4.2 is focused on
calculating a bound on ∆ for the set of general separable states. It should be noted
that, unlike ε, ε̃ (or equivalently ∆) cannot be directly measured in the process of
running the QKD protocol. Therefore Alice should be able to perform some local
action to be able to determine ∆ to some high precision, and then use this value to
determine how much privacy amplification they should perform.

The problem of calculating the fidelity between two multimode Gaussian states
was solved by [BBP15]5. There, they show that, for any Gaussian states ρ1, ρ2, we
have:

√
F (ρ1, ρ2) = F

(
Ṽ1, Ṽ2

)
e−

1
4 (u1−u2)

T(Ṽ1+Ṽ2)
−1

(u1−u2)

F
(
Ṽ1, Ṽ2

)
=

∏n
k=1

√
wk +

√
w2

k − 1

4
√

det
(
Ṽ1 + Ṽ2

) ,
(4.7)

where Ṽ is equivalent to V, but expressed in the basis [x̂1, x̂2, . . . , x̂n, p̂1, p̂2, . . . , p̂n]
T

and wk are the eigenvalues of the auxiliary matrix W, defined as

W = −2iΩT (Ṽ1 + Ṽ2
)−1

(
Ω
4
+ Ṽ2ΩṼ1

)
Ω,

Ω =

[
0 1
−1 0

]
⊗ 1n.

(4.8)

4This may be seen by considering Ref. [GLLP04], section VIII. The purified states corresponding
to each basis are as defined in Ref. [LCW+15], Appendix B. From these it may be seen that 1− 2∆ is
equal to the average square-rooted fidelity between a state being emitted in the X basis and one in the
Y basis. By the symmetry and unitary invariance of the fidelity function, this reduces to finding the
root fidelity between only the states corresponding to θ = 0 and θ = π/2.

5Note, their definition of F is the square root of the definition used in Eq. 2.34. We modify the result
of the cited work to have a definition consistent with our usage.
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When we combine the fidelity given in Eq. 4.7 with the mean vectors and co-
variance matrices given in Eq. 4.4, we find that the fidelity between two of Eve’s
returned states is given by

√
F
(

ρ0
η,µT

, ρπ/2
η,µT

)
=

1
4B

e−2µDω/B
(√

C + |4µTω + 4η(1 + µT)− 1|
)

,
(4.9)

where

B = 2µTω + (1 + µT)(ω
2 + 1)η,

C = 16η2(1 + µT)
2 + 8η(1 + µT)ω(4µT + ω)

+ (1 + 4µTω)2.

(4.10)

Eve wants to choose her parameters ζE and µD in order to minimise the fidelity
(and so maximise the distinguishability) between her returned states. Whilst in-
creasing either of these parameters decreases F, she is not necessarily free to do both
simultaneously. Both squeezing and displacement increase the average number of
photons in each mode, which is limited by some number N. Overall, a state that is
displaced by α and squeezed by ζE has average photon number

〈n〉 = |α|2 + sin2(|ζE|). (4.11)

We may see that the average number of photons in such a state has two parts:
a displacement-contingent part and a squeezing-contingent part. Since these parts
are independent, we may imagine that the situation is as follows: Eve takes her N
photons, and distributes them into displacement and squeezing. She uses pN of
her available photons to contribute towards squeezing and (1− p)N towards dis-
placement. Since a squeezing parameter of ζE gives an average photon number
per mode of sinh2(ζE), and a displacement parameter of α contributes |α|2 pho-
tons, we find that we can do no better that setting the parameters such that ω =

cosh
[
arcsinh

(
2
√

pN
)]

, µD = (1− p)Nη for some p. When we insert these values
into Eq. 4.9, we can investigate the behaviour as a function of p and η for various
values of N and µT. We find that F is always minimised when p = 0. This means
that Eve is best served by using all of her photons to contribute to the displacement
of her state. As such, we can now simplify the fidelity, which may be written as√

F
(

ρ0
η,µT

, ρπ/2
η,µT

)
= exp

(
− µD

1 + 2µT

)
. (4.12)

This means that Eve’s optimal Gaussian-state attack is one involving coherent
states only. This provides a rigorous footing for earlier works which analyse the
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results of coherent-state attacks with an attenuating defence [LCW+15]. Note also,
that this is true whether or not Alice has fine control over the thermal noise level.

4.1.3 Effect of thermal noise on Bob

We can see from Eq. 4.12 that Eve’s knowledge of θ is minimised when µT becomes
very large. However, when Alice sends a lot of thermal photons into the system,
some of these photons are also picked up by Bob. If Bob measures these instead of
the signal photons then he is likely to pick up a bit error. Clearly when µT → ∞ Alice
and Bob will not be able to securely communicate, so we need to find an optimal
level of µT that clouds Eve’s estimation of the state without affecting Bob too much.
In this section we analyse and quantify this.

Consider the case where Alice and Bob are sending and receiving in the same
basis. By implementing asymmetric BB84 [LCA05], this can be the case for almost
all qubits. We now say that at the end of the optical channel between Alice and Bob
there is a polarising beam splitter which sends the incoming photons into one of
two detectors which we label the correct and wrong detectors. These represent Bob
measuring the bits that Alice did and did not send respectively. That is to say, if Alice
sends a 0 bit and Bob measures a 0 bit, or if Alice sent a 1 and Bob measured a 1, then
we say that the detector labelled correct clicked. Otherwise, we say that the wrong
detector clicked. This is simply a shorthand way of encapsulating the symmetry of
the system in a way that does not overly-complicate things.

Alice and Bob will try to distill a secret key from the key bits where Bob believes
he detected only a single photon (which he must assume to be the signal photon).
The probability for this to occur for a given signal qubit we will call psucc. Here
we will assume that Bob uses bucket detectors. That is to say they have two mea-
surement outcomes: either no photons were detected, or one or more photons were
detected. We show in the box below that, perhaps counter-intuitively, this actually
gives a better secret key rate than using number-resolving detectors, in agreement
with previous results [LFU17].

Let pX, p× be the probabilities that the signal photon was detected in the correct
and wrong detector respectively, and p• be the probability that the signal photon is
not detected at all. Let q(c, w) be the probability that c noise photons are detected in
the correct detector and w in the wrong detector. Bob will register a “valid” qubit if
exactly one of the detectors clicks. We can then say that

psucc = pX
∞

∑
c=0

q(c, 0) + p×
∞

∑
w=0

q(0, w)

+ p•
∞

∑
c=1

q(c, 0) + p•
∞

∑
w=1

q(0, w).
(4.13)

We can identify the error rate, ε, as the probability that a photon gives a click in the
wrong detector, and is therefore equal to
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ε =
p× ∑∞

w=0 q(0, w) + p• ∑∞
w=1 q(0, w)

psucc
. (4.14)

To calculate these quantities, we identify the following:

pX = T(1−Q),

p× = TQ

p• = (1− T)

q(i, j) =
µ̃i

T
(µ̃T + 1)i+1

µ̃
j
T

(µ̃T + 1)j+1

∞

∑
c=0

q(c, 0) =
∞

∑
w=0

q(0, w) =
1

µ̃T + 1
∞

∑
c=1

q(c, 0) =
∞

∑
w=1

q(0, w) =
µT

(µ̃T + 1)2 .

(4.15)

Here, Q is the probability for Bob to register a bit-flip error in the absence of
thermal noise, T is the transmissivity of the channel including the efficiency of Bob’s
detectors,6 and µ̃T = TµT/2 is the average number of thermal photons arriving at
each detector. In practice, µ̃T may be lower than this, since Eve will have inadver-
tently intercepted some of them. However, we give here the worst-case scenario. We
can then say that

psucc =
2T(2 + 2µT − TµT)

(2 + TµT)2 ,

ε =
2Q + µT(1− T + QT)

2 + µT(2− T)
.

(4.16)

In order to find an expression for T we assume that the photons face an exponen-
tial drop-off with distance, and set T = e−L/Latt where Latt is the attenuation length.
To model Q, we may assume that, as is usual for QKD protocols, Alice and Bob are
equipped with quantum memories, and the flying qubits are used as a process by
which they establish entanglement between these memories [SDRA+07, NTD+16,
ZDB12, VK17]. This is necessary for all but the most primitive protocols, since some
storing of entangled qubits is required in order to perform entanglement distillation
and privacy amplification algorithms such as DJEMPS [DEJ+96], which are needed
in order to prove that Eve has not entangled Bob’s state with an ancilla. As such, we
set Q = 1

2

[
1− eL/cτ

]
, where τ is the lifetime of the memory (typically on the order

of microseconds) and c is the speed of light. Finally, when psucc < 1, we must replace
∆ with ∆/psucc, since the lost signals may have been selectively eliminated by Eve
to improve her mutual information with the key (Ref. [GLLP04], Eq. 32).

6In Chapter 5 we will use η for the transmissivity, as is commonly the case in communication liter-
ature. However, here we use T to avoid confusion with the transmissivity of Eve’s channel.
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Use of photon-number resolving detectors

Our calculation of the secret-key rate is based on the fact that Bob uses
bucket detectors. One might naturally ask whether using more state-of-the-
art technology such as photon-number-resolving detectors (PNRDs) would
improve the situation for Bob.
When this is the case, Eq. 4.13 becomes

psucc = pX q(0, 0) + p× q(0, 0)

+ p• q(1, 0) + p• q(0, 1),

= T
1

(µ̃T + 1)2 + 2 (1− T)
1

µ̃T + 1
µ̃T

(µ̃T + 1)2 ,

(4.17)

since a click is only registered when exactly one photon enters a detector.
When we calculate ε by taking the sum of the contributions to psucc that
cause the wrong detector to click conditioned on the probability of getting a
click in the first place, we find that ε is actually the same whether we use
PNRDs or bucket detectors! This interesting congruence is a result of the
fact that the noise obeys thermal statistics, and will not generally be true for
other noise distributions. However, whilst the relative error is not affected,
psucc is actually lower in the case of PNRDs! This means that the secret key
rate can not be improved by using PNRDs, and is in fact worsened in almost
all cases. This is because the restriction to PNRDs means that Bob is more
likely to reject legitimate signals than noise photons.

4.1.4 Results of Gaussian-state analysis

By combining these elements, which measure the effects of the thermal noise on Eve
and on Bob, as well as the result that coherent states are optimal, we find that the
final secret key rate for a general multi-mode Gaussian state attack in the presence
of an attenuating filter and a thermal noise defence with error rate ε may given by

K = psucc [1− h2 (ε)− h2 (ε̃ (ε, ∆′))] , (4.18)

where ∆′ =
[
1− exp

(
− µD

1+2µT

)]
/ (2 psucc) and ε̃(ε, ∆′) is defined as above.

Since Eq. 4.18 is highly dependent on µT, we optimise K over µT to find a true
measure of the utility of the thermal noise defence. We consider the case where
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FIGURE 4.2: Minimum achievable secret key rate under the presence
of a coherent state attack (the most powerful Gaussian-state attack),
with a thermal noise defence involving µT photons being added by
Alice to cloud Eve’s attack signal. Top graph shows the key rate for
different values of quantum memory time, τ. Dashed lines show the
key rate with no thermal noise added, and solid lines are key rates
maximised over µT . From left to right for both dashed and solid lines,
we have τ = 2, 5, 10 µs respectively. Lower graph shows the optimal
values of µT at each distance. In all plots µD = 0.1 and Latt = 25 km.

µD = 0.1 and Latt = 25 km. The ability of the thermal noise defence to protect the
secret key rate is shown in Fig. 4.2.

We can see from this that employing a thermal noise defence has the capacity to
more than double the effective range of a QKD system. However, when the key rates
get very small, very high temperatures are required in order to retain any security.
This is because the mechanism by which increasing µT decreases the key rate is by
decreasing the pre-factor psucc, which may go arbitrarily low, but never reach 0. On
the other hand, there is a small critical effective error-rate not equal to 1 that Eve
can induce that will result in the key rate dropping to zero. Therefore, when Alice
calculates that the effective error that could result from Eve launching a THA is
above the critical value, Alice is forced to increase the thermal noise to very high
values to bring the effective error down again. This is another expression of the
general principle that raw key rates may be sacrificed to boost security.

One may notice that the ranges shown in Fig. 4.2 are well below those shown in
many other QKD proposals. One reason for this is that other proposals in general do
not consider the effects of THAs, or SCAs in general, and the key-rate boon provided
by the thermal noise defence cannot exceed the calculated key rate of a system that
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does not recognise SCAs in the first place. Secondarily, the key-rate plots shown here
are intended to show the relative advantage of adding thermal noise to the system.
They are not intended to show the state-of-the-art ranges that might be achieved by
more advanced QKD protocols, which may take advantage of technologies such as
quantum repeaters [VK17, DLCZ01, PR15, EKB16], long-lived quantum memories
[PRM17, NTD+16] or post-selective entanglement generation [KMN+07, VK17].

4.2 General separable attacks

We have shown that, amongst multi-mode collective Gaussian attack states that Eve
might use, the separable coherent state is optimal. Whilst it may seem initially sur-
prising that entanglement does not assist her, note that entanglement between any
two modes will drop off as more of the signal is attenuated. We are left with a distin-
guishability that depends only on the average output photon number, µD, so ∆ does
not explicitly depend on the transmissivity η.

It may be argued that coherent states are likely to be optimal amongst the sep-
arable states, since under loss, photon-counting statistics will tend to be Poissonian
[HPLG07]. Therefore the best state one can hope to use is a Poissonian state that
retains coherence, i.e. a coherent state. However, a state that is initially highly non-
Poissonian in its statistics may require a very high attenuation before it approximates
a Poissonian distribution, and there is no guarantee that the expression for ∆ derived
from coherent states will still hold.

In this section, we consider the set-up where Alice defends against a THA by use
of an attenuator but uses no thermal defence, and that Eve attacks the system using
any separable state, but gets back a state with only a few photons. Whilst this seems
to be a special case for Eve, note that it is more general that the situation considered
in Section 4.1 since this approach considers a set of states which includes, yet is larger
than, the set of coherent states that are optimal within the Gaussian states.

Here, we will consider Eve’s input state in its density matrix form instead of
its covariance matrix form. We will consider the effect of the attenuator on ρ as a
quantum channel, which we express in Kraus operator form:

E (ρ) =
∞

∑
k=0
Ek (ρ) ≡

∞

∑
k=0

ÂkρÂ†
k

Âk =
∞

∑
j=k

√(
j
k

)
√

η j−k√1− η
k |j− k〉〈j| .

(4.19)

Each term ÂkρÂ†
k represents k photons being lost from the state ρ, each with

independent probability 1− η.
We express each term in the map as follows
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Ek (ρ) =
∞

∑
i,j=k

Bi,j,k(η) 〈i| ρ |j〉 · |i− k〉〈j− k|

Bi,j,k(η) =

√(
i
k

)(
j
k

)
η

i+j
2 −k(1− η)k.

(4.20)

Since we require a very high level of attenuation to achieve any kind of useful
secrecy, we may assume that η is very close to 0. Therefore we may expand the factor
Bi,j,k(η) as

Bi,j,k(η) ≈ Bi,j,k(0) +
dB
dη

∣∣∣
0
η +

1
2

d2B
dη2

∣∣∣
0
η2, (4.21)

leading to an expansion of each term in the map as

Ek ≈ E
(0)
k + E (1)k + E (2)k . (4.22)

Using the fact that limx→0 xp = δp,0 for p > 0, we can see that Bi,j,k(0) =√
( i

k)(
j
k)δ(i+j)/2,k. Performing the sums over i, j, k we get E (0) = |0〉〈0|∑∞

k=0 〈k| ρ |k〉 =
|0〉〈0|.7

In the same way, we find that

E (1)k =
∞

∑
i,j=k

√(
i
k

)(
j
k

)[(
i + j

2
− k
)

δ i+j
2 ,k+1 − kδ i+j

2 ,k

]
η

→ E (1) = −µ |0〉〈0|+
µ |1〉〈1|+
∞

∑
k=0

√(
(k + 2)

k

)
|0〉〈2| 〈k| ρ |k + 2〉+

∞

∑
k=0

√(
(k + 2)

k

)
|2〉〈0| 〈k + 2| ρ |k〉 ,

(4.23)

where µ = η ∑∞
k=0 k 〈k| ρ |k〉 is the average number of photons that Eve receives back

after attenuation.8

Similarly,

7Where we have used the fact that Tr[ρ] = 1.
8Note that δ(i+j)/2,k+1 = δi,kδj,k+2 + δi,k+2δj,k + δi,k+1δj,k+1
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E (2) =η2

2

(
v + 〈n̂〉2ρ + 〈n̂〉ρ

)
|0〉〈0| −

η2
(

v + 〈n̂〉2ρ + 〈n̂〉ρ
)
|1〉〈1|+

η2

2

(
v + 〈n̂〉2ρ + 〈n̂〉ρ

)
|2〉〈2|+

off-diagonals on |0〉〈2| and |2〉〈0|+
terms on |i〉〈j| where i or j ≥ 3.

(4.24)

where v = 〈n̂2〉ρ − 〈n̂〉ρ is the variance in the initial state. Whilst the diagonal terms
can be expressed in terms of the macroscopic observables of ρ, the off-diagonal terms
have no such simple expression.

Firstly we should bound the effects of higher-order terms. We do this by suppos-
ing that Eve performs a measurement on her returned state to determine whether or
not the state contains 2 or fewer photons. That is to say, her initial measurement of
E(ρ) has 2 outcomes corresponding to operators ÊX = |0〉〈0|+ |1〉〈1|+ |2〉〈2| and
Ê× = ∑∞

k=3 |k〉〈k|.
In order to ensure that this measurement does not reduce the information that

Eve learns about the state, we say that if she gets the result corresponding to Ê×
then we assume that she learns the key bit θ perfectly. That is to say, instead of
receiving E (ρ) she can be said to receive some state |θ〉〈θ|, where 〈θ1|θ2〉 = δθ1,θ2 .

If the measurement is successful, then Eve’s state is projected onto the two-or-
fewer-photon subspace, giving ρsub = ÊXE(ρ)ÊX/ Tr

[
ÊXE(ρ)

]
. In the case where

θ = 0, this may be expressed in the basis of {|0〉 , |1〉 , |2〉} by

ρθ=0
sub =


1− µ + η2

2 α 0 β

0 µ− η2α 0

β 0 η2

2 α

 , (4.25)

where α = v + 〈n̂〉2ρ + 〈n̂〉ρ and β is some coefficient that cannot be easily expressed
in terms of macroscopic properties of the state. In the case where θ = π/2 we simply
pick up a factor of −1 on the coefficient β. The overall state Eve gets back is then

ρθ
returned = Tr

[
ÊXE(ρ)

]
ρθ

sub + Tr
[
Ê×E(ρ)

]
|θ〉〈θ| . (4.26)

In order to bound the contribution of the second term, we show in Appendix B
that

Tr
[
ÊXE(ρ)

]
≥ e−µ, (4.27)

and so Tr
[
Ê×E(ρ)

]
≤ 1− e−µ.

Since we want to find an upper limit to the information that Eve can learn, we
say that she can receive any state that is consistent with both Eq. 4.25 and the laws
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FIGURE 4.3: Upper bounds on the distinguishability, with average re-
turned photon number µ. Dotted lines show the distinguishability for
a coherent-state attack with a thermal noise defence, of thermal pho-
ton number µT . Upper dotted line (blue) shows µT = 1, lower dotted
line (green) shows µT = 5. The black dashed line is the distinguisha-
bility for coherent-state attacks found by Lucamarini et. al. Solid line
is the bound for separable states, which as expected is always greater
that the other bounds.

of physics. We find that the fidelity between two such density matrices is min-
imised when the variance v is chosen such that the |1〉〈1| component is 0 and the
off-diagonal terms are maximised. Because of this, it turns out that we do not need
to be able to express β in a way relating to macroscopic properties such as average
photon number and variance. We simply choose β to be the largest value such that
ρθ

sub remains positive semi-definite, which is β = 1
2

√
µ(2− µ).

This, along with Eq. 4.26 and Eq. 4.6 gives an ultimate distinguishability bound
for the separable attack-state case of

∆ ≤ 1− e−µ
√

1− 3µ(2− µ)/4
2

. (4.28)

Importantly, this is a function of a single variable that is measurable by Alice; the
average output photon number. By bounding quantities of Eve’s state that cannot be
measured, we have ensured that Alice can make an accurate assessment of how se-
cure her QKD system is, whilst not knowing anything about the microscopic details
of Eve’s state.

Fig. 4.3 shows that the value of ∆ is higher for our separable bound than for the
case of a coherent state, whether one diluted by thermal noise or not. We also show
it to be higher than the bound on ∆ for a noiseless coherent-state attack found by
Lucamarini et al. of ∆ = [1− eµ cos(µ)]/2. Whilst our bound on ∆ is not absolutely
tight (since the 3-photon contributions surely will not convey perfect information of
θ), we can see that is not too generous, since it tracks the known achievable bounds
quite closely.
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4.3 Shutter defence

In both sections 4.1 and 4.2, it was necessary that Alice use a strong one-way atten-
uator, also known as an optical isolator. This was able to let almost all of the light
through in a forward direction, whilst blocking all but perhaps a single photon go-
ing in the reverse.9 Whilst such devices certainly exist [JPE+13, FLO+00], we should
ask if such security is possible without such a high level of attenuation, and if there
is any other device we can insert into the optical channel that will result in a large
effective attenuation factor.

We show here that this is possible by considering the effect of replacing the at-
tenuator with a shutter, such as an electro-optic modulator or a chopper. This runs
contrary to the claim of [GRTZ02] Sec. VI K, where it is claimed that a shutter cannot
defend against a THA (although they consider only a shutter directly adjacent to the
apparatus). This lets light through for a short duration of tS, at a period of tP. Once
Eve’s pulse passes the shutter, it must travel the remaining distance to the appara-
tus that encodes θ, reflect off it, and return to the shutter. If the shutter is closed
when the pulse arrives, it will reflect off the rear-side of the shutter with some co-
efficient of reflectivity ηR, return to the apparatus, and then reflect again. This will
continue until the pulse of light arrives back at the shutter whilst it is open, and it
will then pass through and be detected by Eve. This is schematically illustrated in
Fig. 4.4. Note that whilst the pulse will pick up an additional phase factor of θ on
each reflection, we will hold by the principle of assuming that Eve’s computational
and measurement power is the maximal allowed by the laws of physics. As such, it
is plausible that she will be able to know by the time taken for the pulse to return
exactly how many times the light reflected off the apparatus, and so calculate an
estimate for the actual value of θ from her measured value.

Let tL be the time period that a pulse of light takes to make the return journey
from the shutter to the encoding apparatus and back. If the light makes R return
journeys, then it will have reflected off the rear-side of the shutter R− 1 times. One
may see that R can be found to be the smallest integer such that

0 ≤ (R× tL mod tP) ≤ tS. (4.29)

Note that if the light travel time is known to arbitrary precision and tS can be
made arbitrarily short, then R can be made arbitrarily high, by letting tL = tP− δ for
some arbitrarily small δ. This, however, is physically unrealistic. We should instead
model the shutter as being open for some finite fraction of the light travel time.
Suppose initially that the shutter is open for a tenth of the period, i.e. tS = tP/10. We

9An example of this is a Faraday isolator. The first component of this is a vertical polarising filter
(filter A). After passing through this filter, the light passes through an optical rotator, which rotates
the polarisation by 45◦ clockwise, after which it meets another filter (filter B), aligned at an angle that
is rotated 45◦ clockwise with respect to the first, letting all light through. However, when light tries
to pass in the reverse direction, it will pass through filter B, rotate 45◦ clockwise (with respect to its
new direction of travel), and subsequently meet filter A at an angle perpendicular to the direction of
its filtering, allowing no light to pass.
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Time

tS tP tL

FIGURE 4.4: Schematic showing the operation of the shutter defence.
The green box is the apparatus that encodes the phase θ (and so the
key bit). The beige box is a one-way attenuating filter. Long blue
dashes show the signals, sent out by Alice. These are sent at times
such that they always pass out of the filter. The short red dashes show
Eve’s probe, which must undergo many reflections before being able
to leave the filter.

may say that the light travel time may be varied by implementing various lengths of
coiled optical fibre between the shutter and the apparatus.

The upper part of Fig. 4.5 shows the values of R that result from varying light
travel times, where the light travel time is measured in units of tP. In the middle
part of Fig. 4.5 we convert this value of R into a secret key rate. We do this by using
Eq. 4.18 to find K (with psucc = 1) and use the separable bound Eq. 4.28 for ∆. We
may say that the average output photon number is given by µ = N ηR−1

R , where N
is the input photon number.

The lower part of Fig. 4.5 is the achievable key rate after the application of what
we call a minimising convolution. This is a functional which takes a function f (·), and
maps each point x to the minimum of { f (x + x′) | x′∈ [−δ, δ]} for some convolution
width δ. This is necessary because there may be some experimental uncertainty in
the light travel time. So, for example, whilst a value of tL infinitesimally close to, but
less than tP may seem to give the highest value of R, and so the highest key rate, if
tL was even slightly underestimated, this would result in a value of R = 1 and so
a far lower security would be achieved. For Fig. 4.5 we have used δ = 0.01. This
means that if we have a 95% confidence interval of knowing the light travel time to
within 1%, then we can have a confidence of 95% of being able to achieve the key
rate shown in the lower graph.

Note that if we fix the light travel time appropriately (to approximately about
0.9 × tP) then we can achieve a secret key rate of almost unity from a co-efficient
of reflectivity of ηR = 0.5. One thing that one should bear in mind is that this is
strongly dependent on the width of the confidence interval on tL. Since we take the
minimum of the interval, it is clear that if the interval is too wide, then no secret key
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FIGURE 4.5: Top: The number of reflections a pulse of light will make,
as a function of the light travel time between the shutter and the ap-
paratus. Middle: The resulting secret key rate. Here, we have used
ηR = 0.5, meaning half of the light is lost upon each reflection. Bot-
tom: The minimum secret key rate that can be guaranteed if there is
a 1% margin of error in the knowledge of the light travel time, found
using a minimising convolution functional.

rate will be able to be guaranteed.
If one wishes to halve the width of the relative confidence interval, this can be

done by doubling both the light travel time and the shutter period. However, this
will result in a longer time between raw key bit attempts, which will have a lowering
effect on the key rate. Similarly, if one tries to increase the key rate whilst using a
shutter defence, one should be mindful of the effect it has on the minimum achiev-
able key rate. For example, if the raw key rate was doubled, the uncertainty in tL

could increase from 1% to 2%. We find that this results in a maximum key rate after
the application of a minimising convolution of around 0.75, and so increasing the
overall secret key rate to 2 × 0.75 = 1.5 of the original value. Similar to the case
with adding thermal noise, in any experimental realisation one will have to adjust
the light travel time to find the right balance between increasing raw key rate and
increasing secrecy. In any case, this brief analysis shows that the use of a shutter as a
defence against the THA is one worthy of consideration, and may provide effective
attenuations comparable to those of directional attenuators. The choice as to which
to use in any given implementation will depend on the details of the experimental
set-up.
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4.4 Summary

The discovery and implementation of the Trojan Horse Attack once threatened to
eliminate the security so famously promised by quantum key distribution. Early
seminal works have shown that the situation is not hopeless, and have indicated
ways to quantify and abate this threat.

In this work we have fully characterised and quantified the effect of the THA
on the key rate under two general attack vectors. We have shown that if Eve uses
a multimode Gaussian attack state, her best bet is to use a coherent state. We have
also quantified the maximum damage on the secrecy that could be caused by Eve
using an arbitrary separable state. We hope that this may be extended to the general
entangled case in the future, but we have provided heuristic arguments for why we
do not expect much of an improvement for Eve by doing this.

We have described two novel ways of counteracting the THA; a passive defence,
enabled by adding thermal noise into the system, and an active defence with an
optical modulator. These complement the attenuation-based defence discussed in
earlier work.

This all shows that side-channel attacks cannot be considered only as an af-
terthought in QKD systems. Even a relatively rudimentary SCA can, if not protected
against, hugely reduce the security of a protocol. If we try to improve the security
by privacy amplification alone we find that the secret key rate soon drops to zero.
This highlights the importance of proper and specific defences against SCAs that are
easily quantified in terms of experimentally accessible quantities.
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Chapter 5

A practical repeater for ultra-long
distance quantum communication

In Section 3.2 we discussed various proposals for quantum repeater protocols, de-
signed to extend the range of secure quantum communication beyond the limit im-
posed by the exponential attenuation that single photons suffer when transmitted
through optical fibres. However, the question as to how we should generate the
initial Bell pairs between the repeaters in a way that retains a high fidelity in situa-
tions of non-negligible photon loss and decoherence, remains an open one. This is a
crucial element of any proposal for a repeater network, and long distance quantum
communication and distributed quantum computing will never be achieved with-
out a strong solution to this problem. Additionally, while many photonic methods
for generating Bell pairs exist, it is critical that we examine these in the context of
a quantum repeater. The difficulty of constructing a repeater is not simply equal to
the difficulty of constructing a single Bell pair multiplied by the number of repeater
sections, since issues of technological feasibility and concurrent timing may render
otherwise good methods to be unworkable.

In this chapter we address both of these issues by proposing a complete quantum
repeater protocol based on doubled-heralding and brokered Bell-state measurements.
Critically, these only makes use of existing technology which has been shown to
work reliably in practice. We describe how the same equipment naturally provides
a loss-tolerant way to perform all three parts of the protocol: high-fidelity entan-
glement generation, loss-tolerant indirect Bell measurements and state distillation.
We consider specifically the application of distributing a secret key for secure com-
munication, and an analysis of the relevant errors shows exceptional performance
compared to similar protocols, which carries over to other applications which re-
quire shared entangled states. We demonstrate this using an in-depth analysis of the
errors of the protocol. As such, this work may be constituted as forming a kind of
“threshold theorem," such that if the stated parameters are met, one may be confi-
dent that the claimed rates will be practically achievable.
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5.1 Techniques

Here we shall discuss in more depth some of the techniques that are used in our pro-
tocol. We have already encountered the idea of double-heralding in Section 3.1.4,
which will be used for generating the elementary entanglement between the sta-
tions. We will cover the concepts that underpin our protocol’s quantum memories
and entanglement-swapping.

5.1.1 NV centres

A Nitrogen-Vacancy (NV) centre is a point defect within a diamond that has great
use within quantum optics (see [DH76, HHM84, VOMG88] for original research and
[NTD+14] for pioneering their use in scalable quantum information processing).
It crucially contains two components which may each exhibit a two-dimensional
(qubit) Hilbert space. The first of these is the spin state of the spin-1/2 nucleus of a
15N isotope [NTD+14]. This is typically used to store information due to their long
coherence times, which may be on the order of seconds [MKL+12]. The nuclear
spins may also be easily initialised, and be measured by non-demolition measure-
ments [NTD+14]. The defect also features an electronic spin. While this has a shorter
coherence time, on the order of tenths of a millisecond [NTD+14], it can be used to
easily read and write qubit information [JGP+04]. That is to say, it can serve as an
emitter and a receiver of photonic qubits. Importantly, it also has the correct level
structure [CDT+06] to serve as an emitter for the double-heralding protocol.

5.1.2 Brokering and distillation

Brokering, shown in Fig. 5.1 (a)-(e), is a procedure whereby two NV centres may
be entangled in the graph state sense without destroying any existing entanglement
that they might have with other centres. This is done by projecting existing en-
tanglement relations on the electron spins onto the nuclear spin qubits. We then
try and entangle the electron spin qubits by double-heralding as described above.
While a failed attempt at entanglement generation requires us to reset the qubits in-
volved, the fact that the existing entanglement is supported on a separate physical
part of the NV centre means that the existing entanglement is not disturbed. When
the electron-spin qubits are entangled, a microwave π pulse applied to each centre
applies a controlled-not gate between the electron qubit to the nuclear qubit, entan-
gling them [JGP+04]. Measuring the electron qubits then teleports the entanglement
between the electron qubits down onto the nuclear spins, and measurement of the
nuclear spins removes them from the chain of entanglement, which is equivalent to
a Bell state measurement. While normal optical Bell state measurements by passive
linear gates and no ancilla have a maximum efficiency of 50%, this procedure has
an efficiency limited only by the fidelity of the gates involved and the decoherence
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(a) (b) (c) (d) (e)

(f)

FIGURE 5.1: (a)-(e): Illustration of loss-tolerant indirect Bell measure-
ments by brokering. Nuclear spin qubits are in blue and electron spin
qubits in green. Red lines represent entanglement connections, which
is meant in the sense of an “edge” in a graph state. In particular, the
electron qubits are connected together by double-heralding in (a)-(b).
In (c) these are entangled with the nuclear spins by microwave pulses,
and the electron states are measured to give (d). Nuclear spins are
then measured to give (e). (f): Four sections of the full repeater pro-
tocol, showing S and R type repeater stations. Type S stations send
photons to the type R stations, which entangle one qubit from each
side. The R stations then send classical signals back to the S stations,
which create their own local entanglement. Local measurements then
result in long-range Bell pairs between Alice and Bob.

times of the nuclear spins. This gate fidelity turns out to be the most important factor
in determining the ultimate rate of generation of Bell pairs between Alice and Bob.

Due to the high fidelity of the Bell pairs that are generated between adjacent sta-
tions, this protocol creates high fidelity pairs between Alice and Bob even before
any use of distillation. Nevertheless, distillation is a crucial ingredient in extend-
ing the reachable range. Here we propose to use the DEJMPS protocol ([DEJ+96],
Section 2.2.4).

In previous works on repeaters, it was suggested that this protocol may be un-
suitable for use in a repeater network, since we require two-way communication
to know which attempts have been successful [NTD+16]. This requires waiting for
a time equal to the travel time between distant stations, which we want to avoid
since it leads to large decoherences. Alternative suggestions have involved using
quantum computers and CSS codes [LBSB13, EKB15], but this goes against the phi-
losophy of this work of constructing a simple system which only uses existing tech-
nology. The DEJMPS protocol is well suited to our system, since the CNOT gates
involved can be implemented by a combination of brokered double-heralding and
local rotations. We can avoid the necessity for long waiting times which may lead
to decoherence by implementing blind DEJMPS, described in Section 2.2.4. We note
that one might still want to use non-blind DEJMPS if gate errors outweigh memory
errors.
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5.2 Protocol summary

We now have the three essential elements to build the repeater network: the creation
of long-range Bell pairs, the connection of these pairs within the repeater stations,
and the distillation of states, all using the same system of NV centres and microwave
pulses. The repeater stations are to be built in two types, type S and type R (for
sender and receiver, shown in Fig. 5.1 (f)). Each station contains multiple qubits on
each side (to connect to the stations before it and after it respectively). The presence
of multiple qubits per station decreases the average time that it takes to make at
least one entanglement connection between two adjacent repeaters, and so increases
the rate of generation of Bell pairs between Alice and Bob even before applying
distillation. The full protocol is then implemented as follows.

Type S stations send photons from their qubits to the type R stations before tele-
porting the state of electron spin qubit onto the nuclear spin. The type R stations
use these to try to establish an entanglement connection by double-heralding. Once
a type R station has established at least one entanglement connection to the type S
stations on each side, it may deterministically entangle them together by using bro-
kering to make a linear graph-like state [HEB04]. Classical signals are sent back to
the type S repeaters bringing the information of which connections were successful.
Once a type S repeater has received such a signal from either side, it may simi-
larly perform a deterministic connection between these NV centres, leaving the final
quantum state as a linear chain of entanglement from Alice to Bob via nuclear spins.
These nuclear spins may then be removed from the chain by measuring in the com-
putational basis (via projecting back up to the electron spin qubit) leaving Alice and
Bob in possession of a pure Bell state. The manner in which distillation is carried
out in this protocol is described in Section 5.3.3. The set-up outlined here could be
used for any of the purposes for which we might want to have long-range entangled
states. However, our analysis will focus on the particular case of QKD.

5.3 Analysis

We wish now to derive lower bounds on the secret key rates for both the cases with
and without distillation. The main error sources which we identify in affecting the
fidelity of the final state are dark counts in the detectors, mismatching the parame-
ters of the NV centre cavities, failed gate operations when performing the indirect
Bell measurements, and decoherence on the nuclear spins.

In considering the error analysis we may assume that all measurement results
give the +1 result, so if all operations are successful Alice and Bob would expect
to share |Ψ+〉〈Ψ+| as a final state (measurement results not equal to +1 can be ac-
counted for in classical post-processing). We consider the worst case scenario where
a single failed operation maps to the maximally-mixed state. The state shared be-
tween any two qubits can therefore be described by a Werner state. By “successful
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operation” we mean the quantum gates act as expected, the nuclear spins have not
decohered, and we have not mistaken a dark count detection for a true detection
from a double-heralding round. Let the product of these probabilities for an error
not to occur be x, which is a function of the number of sections, NS. The quantity that
we want to maximise is the secret key rate, given by Eq. 3.8, where ε = (1− x)/2,
which is the error rate averaged across bit and phase errors.

5.3.1 Dark counts

In assessing the effects of dark counts, the key parameter of interest is tW , the waiting
time. This is the time after the excitation of the electrons in the NV centres that we
should wait in order to receive the emitted photons. If this is too small, we will miss
the emitted photons, though if it is too great we will certainly measure a dark count,
decreasing the fidelity of our states. It should be chosen to maximize K.

We model the dark counts (DCs) as a Poissonian process, so we say that the
probability of measuring k dark counts in a time period t is

P(k DCs in t) =
(tΓ)ke−tΓ

k!
, (5.1)

where Γ is the average dark count rate. Also recall from Section 2.1 that the excited
electrons decay with time constant τq, so the probability that they will have not de-
cayed and emitted a photon after time t is e−t/τq .

Therefore, if we wait for a time tW after each photon emission, the probability,
P1, that, after both rounds of emission and detection used for double-heralding we
will have detected one photon in each round is

2 P1 = (1− e−tW /τq) η̄2 e−2tW Γ

+ 2(1− e−tW /τq) η̄ e−tW Γ · tWΓ e−tW Γ
[
1− (1− e−tW /τq)η̄

]
+
[
1− (1− e−tW /τq)η̄

]2
· t2

WΓ2 e−2tW Γ

+ t2
WΓ2 e−2tW Γ

[
1− (1− e−tW /τq)η̄

]2

+ tWΓ e−2tW Γ
[
1− (1− e−tW /τq)2η̄2

]
,

(5.2)

where η̄ = e−L/Latt η is the combined efficiency of transmission, photoemission, and
photodetection (i.e. the probability that all were carried out successfully). The first
three lines are the contributions from the states |0, 1〉 and |1, 0〉, representing two real
detections, one real detection and one DC, and two DCs respectively. The last two
lines give contributions from |0, 0〉 and |1, 1〉, representing two DCs, and one DC and
one real count respectively. The overall factor of 2 is due to the fact that the initial
state is equally weighted between |0, 1〉 , |1, 0〉 and |0, 0〉 , |1, 1〉.

From this we may calculate the contribution to x as
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FIGURE 5.2: Secret key rate against waiting time. K here is the aver-
age number of secret bits generated per raw bit (limited by P1). Here
we have L = 2Latt, η = 0.9, and τq = 20 ns.

xd =
1
2
(1− e−tW /τq) η̄2 e−2tW Γ/P1, (5.3)

resulting in a fidelity of F = (1 + 3 xd)/4. Substituting into Eq. 3.8 we get

K = R0P1

[
1− 2h2

(
1− xd

2

)]
, (5.4)

where R0 is the rate of attempts at entanglement generation (so R = R0P1). Fig. 5.2
plots this secret key rate against the ratio of waiting time to electron decay time-scale.
It can be seen that the effects of dark counts are negligible, even at rates multiple
orders of magnitude greater than what might be expected. It is therefore almost
always better to err on the side of caution and make tW larger than the optimal value
of around 3τq. Note that the figure shows the results for the key rate of a single-
section repeater over a distance of twice the attenuation length. As we shall find
later (Fig. 5.3), the optimal inter-repeater distance never actually exceeds around
28 km, or 1.12 times the attenuation length. For a single-section repeater over this
distance, and a realistic dark count rate of Γ = 500, the key rate is affected by dark
counts by an amount of less than 0.3%. At Γ = 100, this becomes 0.08%. We shall
therefore neglect the effect of dark counts in the remainder of this analysis.

It was found that for more a more realistic value of Γ = 500, the fidelity is affected
by less than one part in 105.
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5.3.2 Decoherence

In addition to dark counts the main sources of noise are mismatching of modes in
adjacent cavities, gate fidelities, and decoherence of the nuclear spins. Mode mis-
matching has been shown to contribute to an error probability of less than 10−3 for
mismatching either the Jaynes-Cummings constants or the cavity energy constants
by up to 5% [KWD03]. We will include the effects of gate fidelities as a free param-
eter in our secret key rate, since they simply contribute a constant overhead at each
station.

The error source which required the most consideration is the decoherence of the
qubits. This is minimized by utilizing the long-lived nuclear spins, so has little effect
on the fidelity for an individual section. The effect becomes pronounced when we
consider the full system with NS � 1, where NS is the number of sections that are
connected together to make the repeater network.

To see how the effects here may be analyzed, consider first the ideal case where
every elementary section connects at the same time since the start of the protocol,
tavg = p−1

c L/c, where pc is the probability for us to make a connection between two
adjacent stations in one attempt at double-heralding and L is the distance between
repeater stations. This is the average time at which a connection between adjacent
stations is made. This is given by

pc = 1−
(

1− 1
2

e−2L/Latt η2
)q

, (5.5)

where Latt is the attenuation length, q is the number of qubit pairs per station, and
η is the efficiency of photon emission and collection. We have set it equal to the
product of the detector efficiency, channel transmissivity, and the coupling efficiency
between the NV centre and the optical channel (which may be made deterministic
[ESR+10]).

The only decoherence effects here will be a factor of exp(−NSL/cτd) contribution
to x as the spins decohere slightly while the signals are being sent from the type R
stations to the type S stations. This is independent of pc since the electron spin
qubits are reset for each round of double-heralding. Even for NS = 100 stations at
L = 25 km, τd = 1 s this is only a factor of ∼ 1− 10−5 contribution to x. Note that
we are not considering the contribution of the gate times, since these are mediated
by microwave pulses which typically last around 50 ns, compared to the light travel
time between stations on the order of tens of microseconds.

A more accurate analysis of the effects of decoherence must take into account the
fact that the establishment of Bell pairs across different sections will not all occur at
the same time, so the first section to be connected must be kept coherent until the
last one has been completed. This is not simply a minor perturbation to the naïve
situation described in the previous paragraph, since now the non-unit efficiencies of
the detectors play a part.



90 Chapter 5. A practical repeater for ultra-long distance quantum communication

For the set of NS sections, let {Tk} be the set of order statistics. That is to say,
T1 is the time at which the first connection is made, T2 is the time of the second
connection, and so on. For an elementary section between two given stations, let ft

be the probability that the connection is formed at a time t, and Ft be the probability
that it is formed at a time less than or equal to t, given by

ft = (1− pc)
t−1 pc,

Ft = 1− (1− pc)
t.

(5.6)

The average value of Tk is then given by

〈Tk〉 =
∞

∑
t=1

t
NS−k

∑
j=0

(
NS

j

)
×[

(1− Ft)
jFNS−j

t − (1− Ft + ft)
j(Ft − ft)

NS−j
]

,

(5.7)

By taking the worst case scenario that we connect all the odd-numbered sections
first (so that we can’t make any indirect Bell measurements until as late as possible),
we have the following contribution to x from decoherence effects:

xe = exp

(
− 2L

cτd

[
NS

2
+ 〈TNS〉+

NS

∑
k=ku

〈Tk〉 −
kl

∑
k=1
〈Tk〉

])
, (5.8)

where ku = d(NS + 1)/2 + 1e, kl = b(NS + 1)/2c, d·e and b·c represent the ceiling
and floor functions respectively, and τd is the decoherence timescale (T2 time) of the
nuclear spins. The additional factor NS comes from the decohering of the nuclear
qubits in the time between sending the photons for double heralding and detection

The final ingredient required in finding the overall rate is a decision on when
to say that an attempt to make an end-to-end connection has finished, indicating to
Alice and Bob that they should then measure their qubits in the Z basis to generate
a key bit. This may be accomplished by one of two methods:

Method A: When the final section completes, a message is sent from it to Alice
and Bob telling them to make the relevant measurements. This will be favorable
when NS and η are both low.

Method B: Decide on a fixed time, tf (as a function of 〈TNS〉), at which Alice and
Bob should make their measurements. This will be favourable when η is small (so
TNS has a narrow distribution) or NS is large. With this method, we will “miss out”
on a fraction ∑∞

t=tf
P(TNS = t) of attempted connections.

We have found that method B, choosing tf = d〈TNS〉+ δe for some buffer value,
δ, is better for almost all choices of parameters, with roughly 90% of connection
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attempts being successful. However, the behaviour of K at a given δ can be highly
erratic with varying NS, so we should optimize our choice of δ individually for each
choice of parameters.

Thus we finally arrive at our secret key rate given by

K = max
δ

d〈TNS 〉+δe

∑
t=1

P(TNS = t)
c

Ld〈TNS〉+ δe︸ ︷︷ ︸
Raw rate

·
[

1− 2h2

(
1
2
(1− xNS

d xNS
mmxNS−1

ga xe(NS))

)]
,︸ ︷︷ ︸

Correction term

(5.9)

where xd, xmm, xga, and xe represent the contribution from dark counts, mode mis-
matching, Bell measurement gates and nuclear spin decoherence respectively. The
raw rate is determined by the light travel time between stations, since (being at the
millisecond scale) it is orders of magnitude longer than the timescales involved in
referencing the NV centres.

5.3.3 Distillation

As we have noted earlier, there are two factors contributing to the key rate, K: the
raw key rate, R, and the error rate, ε. Of these, ε is ostensibly the most important.
While R may drop arbitrarily low and still give a K > 0, ε must stay above 0.11. The
effect of the distillation that we consider here is to therefore ensure that the proba-
bility of no error occurring, x, is maintained always above some critical probability,
xc. This works as follows:

First, we calculate a number of sections, Nlong. This is the largest NS for which
x(NS) > xc, where x(NS) is the overall value for x as an explicit function of NS.
Entanglement over this distance is created, and distilled by DEJMPS. Before distilla-
tion, we assume that the errors that the state may undergo are entirely random. This
means that the state will be a Werner state, given by

ρ = ρW

(
F =

1 + 3x
4

)
. (5.10)

After distillation, the state is mapped to a non-Werner state. Since calculating the
fidelity resulting from repeated application of DEJMPS distillation becomes analyt-
ically intractable, we wish to deal only with Werner states. At this point, we might
choose to replace the result of the distillation operation with a Werner state of the
same fidelity. This gives an upper bound on the error (and hence a lower bound
on the rate) since a Werner state is the highest entropy state of a given fidelity. In
Eq. 2.57 we show that the fidelity of a Werner state after one round of distillation is
given by F′ = (10F2 − 2F + 1)/(9ND).
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However, a better choice is to do one round of distillation, followed by an appli-
cation of a local Hadamard gate1 to all qubits, followed by another round of distil-
lation before mapping to a Werner state. In this situation, the first distillation will
deal with phase errors, and the second will deal with bit errors. If we only do the
first distillation, we will not suppress bit errors. However, if we do two distillations
before mapping to a Werner state, then we have a quadratic suppression of errors
with respect to the first method. By considering the expressions for the state coeffi-
cients given in Eq. 2.54, we may see that the fidelity after two rounds of distillation
(without mapping to a Werner state in between) is given by:

F′′ =
81F4 + 5(1− F)4 + 18F2(1− F)2

81ND,2
, (5.11)

where ND,2 =
(

F2 + 3F2
e
)2

+ 4
(

FFe + F2
e
)2, and Fe = (1 − F)/3. Note that in all

equations here, F is the fidelity of the Werner states with respect to |Φ+〉 before
either distillation has been performed.

The advantage of distilling twice before mapping to a Werner state may be no-
ticed most clearly when we consider the average of the post-distillation fidelities
with the Bell states other than |Φ+〉. Before distillation, this average is equal to Fe.
When using the method where we distil once, then the average of the relevant fideli-
ties contains a term that is still linear in Fe. However, when we distil twice before
mapping to a Werner state, the largest term in the fidelity with the “incorrect” states
goes with F3

e , making the advantage clear.
We then identify another number of sections, Nshort. To highlight the purpose of

Nshort, it is clearest to indicate what it would be, if we were only distilling once before
assuming we map back to a Werner state. In this case, it would be defined as the
largest NS such that [4F′/3− 1/3] · x(NS) > xc, where the factor on the left-hand side
is the probability of no error occurring corresponding to a Werner state of fidelity F′.
That is to say, we let the state decay to the point where there is a probability of error
of xc = 4F/3− 1/3, we perform a distillation to reach fidelity F′, corresponding to
a probability of error of 4F′/3− 1/3, and then connect over another Nshort sections,
leading to the probability of error being multiplied by x(NS). It is therefore this
number of sections that we can afford to connect to the first Nlong sections before we
need to distil again, such that x stays above xc.

However, since we are in fact distilling twice before reducing our state to a Werner
state, we instead say that Nshort is the solution to

4F′′ − 1
3

· x(2NS) > xc. (5.12)

This is solved by using Eq. 5.11, where F = (1 + 3xc)/4.
When we distil sets of qubit pairs together, we are at best left with 50% of the

number of pairs that we started with. This must be multiplied by the probability that

1This maps |0〉 ↔ |+〉 and |1〉 ↔ |−〉. When applied to both parts of the Bell states, it maps∣∣Φ+
〉
→
∣∣Φ+

〉
,
∣∣Ψ−〉→ − ∣∣Ψ−〉 ,

∣∣Ψ+
〉
→
∣∣Φ−〉 , and

∣∣Φ−〉→ ∣∣Ψ+
〉
.
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the distillation succeeded. This is given by Eq. 2.56. For a Werner state described by
Eq. 5.10 for x = xc, this is given by

ND =
1 + x2

c
2

. (5.13)

Therefore, for NS ≥ Nlong (the regime where we intend to start distillation) we
get a secret key rate for our protocol of

Kdist(xc) ≥ Rraw

(
1 + x2

c
4

) NS−Nlong
Nshort

[
1− 2h2(

1− xc

2
)

]
, (5.14)

where we are using ≥ instead of = since we fix x at the lower bound of xc. Here,
Rraw is the raw rate term from Eq. 5.9. Unlike Eq. 5.9 this never drops below zero
(since we effectively pin x at xc) but at an exponential cost in the raw rate. To get the
best key rate at a given distance, we maximise over choices of xc ∈ [0.78, 1].2

We emphasize here that we are considering all noisy pairs to be the same. That
is to say, the kth order statistic, Tk, for any given connection attempt is given by its
expectation value. In reality, some connections are going to be established sooner
than others and so will have a higher fidelity. There remains the open question of
how best to pair up non-identical noisy pairs taken from some distribution, that is
addressed in Chapter 6 and Appendix C.

5.4 Performance

In Fig. 5.3 we analyse the achievable secret key rates for a range of distances (us-
ing blind distillation). For a fair comparison, we consider two measures of the key
rate. Firstly, we consider the key rate per channel. This is the key rate normalised by
the number of parallel channels, q. This makes for a fair comparison, since K may
be made arbitrarily large by increasing q. Note that this is not the same thing as
normalising by the total physical resources, which is given by the key rate divided
by the total number of qubits, 2qNS, which we also show. We note that, unlike q,
increasing NS does not necessarily increase K, since it also increases the probability
of a local gate error occurring. We show the achievable results for various values
of the local gate error probability, xga, which turns out to be of critical importance
in determining the key rate. In addition to the realistic scenarios of xga = 0.95 and
xga = 0.99, we show the optimized rate in line with the gate quality that is necessary
for fault-tolerant quantum computing, xga = 0.999. It is noteworthy that if such gate
qualities are reached, then this protocol will enable secure communication on the
intercontinental range. The rates shown here are lower bounds, since we are not in-
cluding the effects of parallelisation. In reality, when one section forms a connection
across one of its pairs of qubits, the others will keep attempting to make connections

2Choosing xc to be below 0.78 results in K = 0.
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FIGURE 5.3: Attainable secret key rates for different values of gate
quality, xga, optimised over number of repeaters NS. Top: key rate per
channel = K/q, bottom: key rate per qubit = K/(2qNS). Solid lines are
without distillation, long dashed lines are with. Short dashes show
the optimal values of NS, with the scale shown on the right-hand axis.

while waiting for the other sections to connect, meaning the true rate is likely to be
far higher.

At each distance we have optimised over the choice of NS, and shown the opti-
mal choice at each distance. As expected, this increases with distance. We also note
that for low values of xga, the optimal NS is lower. This is because gate errors become
more relevant than decoherence errors in this case. All plots are shown for η = 0.9,
q = 10, and Latt = 25 km.

We assume here that we attempt to detect all emitted photons. In various phys-
ical implementations this may not be the case, and we may wish to post-select on
some fraction µ of the photons. An example of this may be in NV centres where we
wish to use the zero-photon line (since only these photons are perfectly entangled
with the emitting centre). Recent advancements have produced NV centres with
Debye-Waller factors of 0.4, requiring a seven-fold increase in the number of qubits
needed per station [JDG+15].
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5.5 Comparison with other protocols

To get a good idea of the quality of the protocol, it is necessary to have some point
of reference. The most naive alternative to our repeater protocol would be a system
where we simply have q quantum channels direct from Alice to Bob. Our protocol
easily beats this system. At a range of 100 km, our protocol gives normalised rates
of 102 – 104, whereas the naive protocol, even if there is no loss of fidelity over the
long range, would have a key rate of e−4 ≈ 10−2.

We have also compared our setup to various others in the existing literature. For
a meaningful comparison, it is of course necessary to match the choices of experi-
mental parameters. Since we are comparing against theoretical proposals, there are
only a few parameters which are meaningful across all proposals. One such pa-
rameter is the local gate efficiency (xga in our work), which we have matched with
relevant parameters in comparison protocols. Another well-defined value is the re-
source cost, such as the number of memories, stationary qubits, or subsystems. For a
meaningful comparison, we consider here the normalised secret key rates, which are
the secret key rates divided by the number of qubits used. The third well-defined
parameter that we identify is the repetition rate. However, this is included in the
overall secret key rate, which we have explained above to be dominated by the light
travel time, so does not require additional attention.

One of the closest schemes conceptually is that of Nemoto et. al. [NTD+14].
This also uses NV centres, but transfers entanglement between the nodes by encod-
ing information in the polarisation of a single photon, which requires the nodes to
be equipped with single-photon detectors. A value for local-gate errors of 0.3% is
used, corresponding to a secret key rate of the top line on our Fig. 5.3. For total dis-
tances of 200 km and 500 km, Nemoto’s protocol gives normalised secret key rates of
approximately 16 and 3 (where the normalisation divides by the number of qubits
used), whilst ours gives normalised rates of 159 and 75. This order-of-magnitude
improvement is particularly striking when we consider the fact that the two analy-
ses are greatly different. In our protocol we have assumed that the rate of bit errors
and phase errors are the same, since the application of indirect Bell measurements
to connect two Bell pairs may give any one of the four Bell states as a result, depen-
dent on the outcomes of the measurements. This results in a mixing of phase and bit
errors, whereas Nemoto et al. consider phase errors to be dominant, resulting in a
key rate correction term of only 1− h2(ε), rather than the standard 1− 2h2(ε).

Additionally our protocol beats other realistic linear-optical repeater schemes
such as [SDRA+07, DBCZ99, KGD+15, PR15] by some orders of magnitude, how-
ever gives lower rates than proposals based on advanced encoding schemes [ATL15,
MSD+12]. This is to be expected, since our proposal falls within the category of
schemes that are simple to build and do not require large encoded states. In the in-
termediate regime, there are other protocols. One such is the measurement-based
scheme of Ref. [ZDB12], which gives lower normalised rates in the regime of a few
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thousand kilometers, but has greater reachable distances.

5.6 Summary

We have presented a protocol for a quantum repeater network that allows for greater
reachable distances and higher secret key rates than other methods in the literature,
yet is implementable using today’s technology. Unlike most other proposals for such
networks, the fidelity of the elementary links is not affected by photon loss, nor de-
tectors that do not perfectly count photon number. We have demonstrated that this
leads to excellent secret key rates over thousands of kilometers, given sufficiently
high gate fidelities. This gives a strong indication that we may be able to have abso-
lutely secure communication over intercontinental distances in the near future.
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Chapter 6

Statistical analysis of quantum
entangled network generation

We have seen already how the ability to construct large-scale quantum networks
between two or more parties is a necessary precursor to the general deployment of
entanglement-based quantum key distribution as a ubiquitous alternative to classi-
cal encryption [Eke91, VV14], as well as the creation of measurement-based quan-
tum computers [BBD+09]. Implementations of such networks would range from Bell
states for point-to-point communication over large distances [Bel64, BDCZ98], to
highly connected cluster states [KL10] and a complete distributed quantum Internet
[Kim08, CCB18], that may itself involve non-trivial routing problems [Cal17]. Many
theoretical proposals have been put forward for different schemes to implement
these tasks, and in general the construction of these quantum networks requires
the use of probabilistic elements. For example, many probabilistic methods for the
generation of entanglement between nodes of a network have been proposed [BK05,
CB08, BBFM06, CTSL06], as well as many high-level schemes that take advantage
of such methods, such as entanglement-based quantum repeaters [PKEG16, BRS10,
MBF10, VK17, ATL15, DLCZ01] and entanglement distillation [DEJ+96, DB07]. Prob-
abilistic methods are also used in the implementation of non-linear unitary opera-
tions on optical states, such as those used in linear optical quantum computation
[KLM01, BR05, KMN+07] and code-based repeaters [MSD+12, RHG05], as well as
schemes for making measurements of states in a way that is protected against parti-
cle loss [VBR06]. The presence of such probabilistic components means that a com-
plex composite protocol will likely take many attempts before completing its task.
When a single element fails, this could result in the entire process, or a subsection
of it, needing to be restarted. It may also result in waiting errors. This is where one
part of the protocol finishes, but accumulates errors while waiting for another part
to complete. This was analysed briefly in Chapter 5, particularly in Section 5.3.2, al-
though there is much more to be said on the matter for such an analysis to be treated
as a truly accurate representation of the system.

Typically, in many analyses of quantum network systems, the full depth of sta-
tistical information that may be gleaned from the full probability distributions over
completion times or error distributions is neglected in favor of a simpler analysis,
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such as analysing the average values. However, this can result in too limited a char-
acterization of the protocol, and one that may miss essential features. For example,
a situation that is commonly considered in the context of quantum communication
is the time taken to generate a set of entangled states between Alice and Bob, which
may be distilled in order to generate a smaller number of higher-fidelity pairs. If we
consider that all pairs connect after some average time, t, then the secret key rate
will scale linearly with the number of states that we are trying to connect in parallel,
and inversely proportional with t. In reality, not all pairs of entangled states will
establish at the same time. However, if we intend to use all of them for distillation,
then the pairs that establish first will have to be stored on quantum memories, and
the fidelities of these states will decay while they wait for the other pairs to com-
plete. It will therefore not necessarily be advantageous to have a greater number of
pairs try to establish their entanglement in parallel. A good understanding of the
distribution of times taken by a protocol and the corresponding error probabilities is
thus essential for any analysis of a protocol.

We begin with some general methods that may be used for the analysis of prob-
abilistic processes using Markov chain analysis. Markov chains have recently been
applied to quantum networks by Shchukin, Schmidt and van Loock [SSvL17]. We
build upon these techniques in order to include errors in a natural way, as well as in-
troducing new analytic techniques to greatly reduce the computational burden that
comes with any deep analysis of Markov chains. In Section 6.1 we explain how one
may construct Markov matrices for probabilistic processes, and how the matrices
for larger compound processes can be constructed from the matrices of smaller pro-
cesses. We show also how we can find {pt| t ∈ N} from such matrices, where pt is
the probability that the process will complete at time t. In Section 6.2 we show how
one may find the probability-generating function (PGF) from the Markov matrix.
We then show how one may solve the PGF to find the completion time distribution
such that the computational complexity of finding pt is decreased by a factor of nP
compared to using the matrix alone, where nP is the dimension of the matrix.

In Section 6.3 we show how to calculate the probability distribution for the num-
ber of times that a given event in a process occurs. This rather general method may
be used to calculate the distribution of the number of errors that will accumulate in
the running of a process, both on average and conditioned on the completion time.

In Section 6.4 we examine a modification of the Innsbruck protocol for distillation-
based quantum repeaters [BDCZ98], where the available quantum memories at a
repeater station are bunched. By this, we mean we separate the available pairs of
quantum memories between each pair of repeater stations into bunches of fixed size
which are then distilled once all entanglement connections within the bunch have
completed. We apply the techniques developed here to estimate the best values for
the sizes of these bunches. This allows for a richer characterization of the secret key
rates reachable by a protocol than may be learned from an analysis that does not
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FIGURE 6.1: Graph for simple probabilistic entanglement generation.
Each node represents a state that the system may be in at any one
time. Transitions between nodes are considered to all take the same
length of time, and occur with probabilities indicated by the weight
of the edge. Terminating node shown in black.

account for the statistical factors that are captured by the Markov chain formula-
tion. Finally, in Section 6.4.3 we consider a simplification of our statistical analysis
of the Innsbruck protocol. By considering bounds on the order statistics of comple-
tion times of certain elements within the protocol, we derive bounds on the secret
key rates. This allows us to identify minimum experimental parameters that must be
reached in order to securely communicate over a repeater network of many sections.

6.1 Markov chains

Let P be some process that may be decomposed into events taking place across a
series of discrete time-steps. This process may be summarised by a directed graph,
GP , which is a flowchart showing possible paths of progression. Each node repre-
sents a unique state that the process may be in at any one time. The edges leading
away from each node are the possible events (with the traversal of an edge being
considered to take one time-step), with the weight of each edge representing the
probability that that step will be taken. Each graph must include at least one termi-
nating node (with no edges leaving it) representing the termination of the process.
For example, if P is the protocol of establishing entanglement between a single pair
of quantum memories by a probabilistic process that succeeds with probability p,
then GP is given by Fig. 6.1 (see 1). Since P is probabilistic, the time that it takes to
complete is represented by a random variable, T, that takes on value t with proba-
bility pt.

From here, we can form the square Markov matrix for the process, MP , which
is the adjacency matrix of GP .2 That is to say, [MP ]i,j is the weight of the edge of
GP leading from node j to node i for some fixed labeling of GP . This means that the
jth column contains the transition probabilities away from node j. This immediately
gives us an operational method to find {pt}. If we let IP be the set of indices for
terminating nodes, then we may say that

pt = ∑
i∈IP

[
Mt
P
]

i,1 , (6.1)

1Here we have used the convention that an absorbing node of the process has no edges leading
away from it. Many standard texts on Markov chains use the convention that absorbing nodes should
transition to themselves with probability 1.

2These Markov matrices are such that the columns sum to either 0 (for terminating nodes) or 1.
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where the node representing the start of the process is given the label 1. For example,
for the system shown in Fig. 6.1, we have

MP =

[
1− p 0

p 0

]
. (6.2)

If, for example, we wish to know the probability of a process completing in exactly
2 time steps, we would look at M2

P , which is given by

M2
P =

[
(1− p)2 0
p(1− p) 0

]
. (6.3)

We would then see that [MP ]2,1 = p(1− p). This is indeed the probability of com-
pleting in 2 time-steps, since event 1 must fail once and succeed once for this to be
the case.

From the matrices for simple processes we can build up matrices for more com-
plex processes. Consider two processes P1 and P2. We wish to concatenate these
to form the process P3, which consists of P1 and P2 being run simultaneously but
independently. For each unique pair of states with one chosen from P1 and one cho-
sen from P2, we should assign a unique state in P3. Additionally, for two such pairs
of states, s1

P1
, s1
P2

and s2
P1

, s2
P2

, then the independence of P1 and P1 implies that the
probability to move from the state representing (s1

P1
, s1
P2
) to (s2

P1
, s2
P2
) in P3 should be

given by p(s1
P1
→ s2

P1
) · p(s1

P2
→ s2

P2
). Therefore if we consider P3 to have finished

when P1 or P2 has finished, then our combined matrix is the tensor product of the
constituent matrices:

MP3 = MP1 ⊗MP2 . (6.4)

We may instead wish to wait until both P1 and P2 have completed before con-
sidering P3 to have completed. In this case we should add an element to the matrix
for each subprocess that keeps the system on that terminating node until the other
subprocess has completed. The composite matrix is therefore

MP3 = [MP1 + diag(IP1)]⊗ [MP2 + diag(IP2)]

− diag(IP1 ⊗ IP2).
(6.5)

where IP
∣∣
i = 1 if i ∈ IP , and 0 otherwise, and diag(I) is a matrix with the elements

of I on the diagonal, and with zeros elsewhere.
Suppose that instead we consider P3 to consist of P1 followed by P2. When we

reach the terminating nodes of P1, the next time-step will have us arrive at the first
node of P2. Then

[MP3 ]i,j = [MP1 ⊕MP2 ]i,j + ∑
k∈IP1

δi,kδj,nP1+1 (6.6)
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where nP1 is the number of nodes in GP1 or the number of rows or columns in MP1 .
It may also be the case that different parts of a process take different lengths of

time, instead of the above construction which assumes that each event takes a single
time-step. Suppose that within some process, P , we have some events (edges on GP )
that take some time k1, and some that take k2, where k2 ≥ k1. We can decompose MP
as MP ,k1 + MP ,k2 , such that all elements in MP ,k1 represent events that take k1, and
similar for MP ,k2 . From this we can create a new process matrix M′P which properly
accounts for the fact that events in subprocess P1 can be done many times for each
time that P2 can be done. This is given by

[
M′P

]
i,j = ∑

k

{[
Mdk2/k1e

P,k1

]
i,k
+(

1−∑
i

[
Mdk2/k1e

P,k1

]
i,k

)
δi,k

}
[MP,k2 ]k,j

(6.7)

where the term in parentheses ensures that the system does not move off terminating
nodes.

As such, pt calculated from M′tP will represent the probability that the process
completes after t applications of P2 and tk2/k1 applications of P1. It should be noted
that the modification of process matrices to account for timing differences should be
done before creating composite matrices by tensor products.

Using Markov matrices along with Eq. 6.1 is a simple way to calculate the com-
pletion times of a process, although it is not necessarily the most efficient. Multi-
plying MP by itself takes nkMM

P elementary multiplications, where kMM = 3 for the
naive approach of matrix multiplication, and the best known asymptotic result is
kMM ≈ 2.373. Given some algorithm for calculating exponentials that has a number
of operations that scales asymptotically as fexp(t) for the calculation of kt for some
constant k, we find that the calculation of pt scales asymptotically as

O(pt by matrix mult) = O
(
n2.373
P fexp(t)

)
. (6.8)

In the next section we derive a method by which this may be reduced to being
linear in nP .

6.2 Probability generating functions

In this section we show how an approach based on probability generating functions
(PGFs) and complex analysis can lead to formulas for pt that are faster to compute
than the matrix multiplications of Eq. 6.1.

The probability generating function of a distribution {pt} corresponding to the
completion times for a process P is defined as the polynomial
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fP (z) = p0 + p1z + p2z2 + p3z3 + · · · , (6.9)

where z is a complex variable, and pt are constants to be determined based on P .
Given the PGF associated with some process, the elements pt may be found by cal-
culating the coefficients of the various terms by finding the derivatives:

pt =
1
t!

dt fP (z)
dzt

∣∣∣∣
z=0

. (6.10)

In order to write down the PGF, it may seem like we need to already know all
of {pt}. However, we can calculate fP (z) directly from GP . Consider a node in GP ,
x, with one edge leading to node y with probability 1. Let f (x)

P (z) be the PGF for
the system when we start at node x. Since the system will take exactly one time-
step longer to complete when we start at x than when we start at y, we can say
that f (x)

P (z) = z f (y)P (z). Now suppose that x has two edges leading away from it
to nodes y1 and y2 with probabilities p(y1) and p(y2) respectively. Then, f (x)

P (z) =

z p(y1) f (y1)
P (z) + z p(y2) f (y2)

P (z). By extension, we may say that

f (j)
P (z) =

∑i [MP ]i,j z f (i)P (z) if j 6∈ IP ,

1 if j ∈ IP ,
(6.11)

where the sum runs over all columns in the matrix, which is an eigenvalue equation.
The PGF of the process as a whole [ fP (z)] may be identified with the PGF of the
initial node [ f (1)P (z)]. In particular, fP (z) is the first element of the eigenvector of
M̃P (z) with eigenvalue 1, normalised such that the kth element is 1 for any k ∈ IP ,
where

M̃P (z) = zMT
P + diag(IP ). (6.12)

However, a problem may arise in the process of finding the set of eigenvectors.
We wish to retain z as an open variable in the PGF, which means that many of the
fast methods for finding eigenvalues of matrices cannot be used, since they rely on
numerical methods. In order to find an eigenvector of a completely general matrix,
M, we need to be able to solve the characteristic equation |M− λ1| = 0. This in-
volves exactly solving a polynomial of order nP , which cannot in general be done
for nP ≥ 5. Instead, we use the fact that the eigenvalue is 1, so that M̃ fP = fP ,
where fP is the vector with ith element equal to f (i)P , and say that

fP (z) = [ fP ]1 / [ fP ]k

fP = Null
[
M̃P (z)− 1

]
,

(6.13)

for any k ∈ IP . Note that we have used a slight abuse of notation and specified that
fP is equal to the null space itself and not a particular vector in the null space. This is
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because the null space has a dimension of 1. We can see this by the fact that, if MP is
a Markov matrix, then M̃T

P (z) must also be Markovian at z = 1. Moreover, the sum
of all values in each column of M̃T

P (1) will equal 1, which means that M̃T
P (1) fits the

usual definition of a stochastic matrix found in standard Markov chain textbooks.
All such stochastic matrices have exactly one eigenvalue at 1 [Pri13], and so the
other eigenvalues of M̃P (z) must either be never equal to 1 or be z-dependent.

Having found the PGF, we want to use it with Eq. 6.10 to find {pt}. Manually
calculating the first few derivatives of the PGF may be possible. However the task
soon becomes difficult for higher-order terms. By using Cauchy’s differential for-
mula [MH12], we find not only an easy way to compute higher derivatives, but a
closed-form expression for an arbitrary derivative that can easily be calculated with-
out needing to calculate all lower derivatives. The formula states that for some arbi-
trary point a ∈ S,

1
t!

dt fP (z)
dzt

∣∣∣∣
z=a

=
1

2πi

∮
∂S

fP (z)
(z− a)t+1 dz, (6.14)

where ∂S is the boundary of S; a compact subset of C on which fP (z) is analytic.
Let a = 0 and gt(z) = fP (z)/zt+1. We will evaluate the integral of gt(z) on a

circle centered on z = 0. If the contour encloses no poles except the one at 0 due to
the z−(t+1) term, then this is equivalent to finding the residue of the pole of gt(z) at
0. Suppose that fP (z) scales as O(zt0) as |z| → ∞. Then the integral of gt(z) on a
circular path of radius R will tend to 0 as R → ∞ for all t > t0 (since dz = |z|dθ).
However, by Cauchy’s residue theorem, this integral must also be equal to 2πi times
the sum of all residues of gt(z) in S. This includes the pole at 0, which we get from
the z−(t+1) term, and the poles elsewhere in the complex plane, which are the poles
of fP (z). Therefore the sum of the residues of all poles must be equal to 0 for t > t0.
The residue at z = 0 cannot be easily directly calculated since it is a non-simple pole,
but we can calculate it indirectly since we know it must be equal to the negative of
the sum of the residues of the other poles, which are in general simple. We therefore
arrive at our main original result of this section:

pt = −∑
i

Res
[

fP (z)
zt+1 , zi ∈ P( fP )

]
, (6.15)

where P( f ) is the set of singularities of fP (z).
As a corollary, we may use this method to easily find expectation values for com-

pletion times of such processes. Consider that

〈T〉 = ∑
t

t pt. (6.16)

If we use the fact that

Res
[

fP (z)
zt+1 , zi

]
=

Res [ fP (z), zi]

zi
t+1 , (6.17)
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since fP (z) has no pole at 0, we can write Eq. 6.16 as

〈T〉 = −∑
i

Res [ fP (z), zi]∑
t

t
zt+1

i

, (6.18)

where the zi sum is implicitly over the poles of fP (z). We can use the identity

∑∞
n=0 n xn−1 = (1− x)−2 to find the sum over the t–dependent terms, giving

〈T〉 = −∑
i

Res [ fP (z), zi]

(1− zi)2 , (6.19)

Similarly, we can find the probability of the process completing by t, and the
variance of the completion times:

p(T ≤ t) = ∑
i

1− z−t−1
i

1− zi
Res [ fP (z), zi] , (6.20)

Var(T) = ∑
i

1 + zi

(1− zi)3 Res [ fP (z), zi]− 〈T〉2 , (6.21)

We may note now that, if fP (z) is built up constructively, as in Eq. 6.11, each
non-terminating node contributes a single factor of z to the PGF. This means that
fP (z)−1 must be of order nP − |IP |2 at most, and so have no more than nP − |IP |2

poles. When calculating pt by Eq. 6.15, the residues of fP (z)/z are not t-dependent.
Therefore, when we vary t, we simply need to calculate zt

i for each zi ∈ P( fP ). Given
again some algorithm for calculating exponentials kt in O( fexp(t)) operations, we
have that calculating pt now scales asymptotically as

O(pt by Cauchy) = O
([

nP − |IP |2
]

fexp(t)
)

, (6.22)

which represents an improvement of a factor of nP over the matrix multiplication
method. This factor may be very significant if we are using Eq. 6.4 or Eq. 6.5 to
construct Markov descriptions of large processes. Additionally, when using the PGF
method we may retain all transition probabilities as open variables, without running
out of memory issues (if calculating results with a computer) or paper (if doing so
by hand).

6.2.1 Double-heralding completion times

Here we will give an explicit, simple example of this method of finding pt with gen-
erating functions, to highlight its utility. We will then use this example to show how
the method may be used to find analytic expressions for the Fisher information. We
will analyse the distribution of completion times of the double-heralding protocol
for entanglement generation, as described in Section 3.1.4. This involves two rounds
of photon transfer, the failure of either of which will cause the process to be restarted.
We may therefore draw a simple Markov graph for this process as shown in Fig. 6.2,
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FIGURE 6.2: Markov graph for the two stages of double-heralding.

where p is the probability of passing the first round, and q the probability of passing
the second, conditional on passing the first. If the transmissivity of the channel is ηT

and the efficiency of Bob’s detector is ηD, these may be written in terms of η = ηTηD

as

p =
η

2
+

1− (1− η)2

4
,

q =
2η2

4η − η2 .
(6.23)

where the second term in p comes from the chance that both emitters emitted a
photon.

From this graph, we may start to build up the PGF in an iterative, constructive
way. We start by writing down the PGF for the first node according to the rules of
Eq. 6.11:

f (1)P (z) = zp f (2)P (z) + z(1− p) f (1)P (z),

→ f (1)P (z) =
zp f (2)P (z)

1− z(1− p)
.

(6.24)

In the construction of f (1)P (z), we can see that we will only get non-trivial be-
haviour when the system includes closed loops, which will give the PGF a z-dependent
denominator, and so at least one non-analytic singularity.3 We then substitute in
f (2)P (z) = zq + z(1 − q) f (1)P (z), and simplify to get the PGF for the whole system
(implicitly starting from node 1), fP (z) := f (1)P (z), given by

fP (z) =
z2 pq

1− z(1− p)− z2 p(1− q)
. (6.25)

Solving fP (z)−1 = 0 finds the poles:

z± =
p− 1±

√
(1− p)2 + 4p(1− q)
2p(1− q)

. (6.26)

The residue of fP (z) at a pole z = z± is given by limz→z± [(z− z±) fP (z)]. Using
Eq. 6.15, we therefore get

3Note that the method still technically works when there are no loops, but in that case we will have
t0 = ∞, so it reduces to calculating all derivatives “by hand.”
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FIGURE 6.3: Completion time probabilities for double-heralding.

pt =
pq√

(1− p)2 + 4p(1− q)

(
z1−t
− − z1−t

+

)
. (6.27)

This is illustrated in Fig. 6.3.
We have already covered the fact that the method of PGFs introduces a nP -fold

speedup in calculating pt. Here we discuss another benefit, that becomes most ap-
parent when calculating derivatives. Suppose that we wish to calculate ∂η pt. To
do this, it is necessary that we have an expression for pt that retains η as an open
variable, which is the case for Eq. 6.27. Note also that this equation is a general one
that applies for all t. If, on the other hand, we wanted to calculate the ∂η pt from the
matrix multiplication method, then we would have much more difficulty. This is
because there are two ways we can approach the calculation of ∂η pt if we are using
Markov matrices directly, which are performing the differentiation before or after
the matrix exponentiation. i.e., assuming IP = {nP} we can calculate ∂η

[
Mt
P
]

1,nP
or
[
∂η Mt

P
]

1,nP
. In the first of these two forms, we will have to calculate the deriva-

tive separately for each t. Not only that, but pt

(
=
[
Mt
P
]

1,nP

)
will include a super-

exponential 22t−1−1 terms, with each term being a polynomial in η up to order t− 1.
The latter form is no easier to analyse, particularly since ∂η MP does not generally
commute with MP . It is therefore clear that the PGF method provides a great advan-
tage when we wish to calculate derivatives of distributions with respect to parame-
ters.

One may very well ask now why we should wish to do such a thing. Consider
the following situation. Alice and Bob are trying to distribute entangled pairs by
double-heralding. Eve wants to attack this system by a photon-number splitting



6.3. Error distributions 107

attack.4 Suppose the Alice’s source has a probability pmulti to emit a multi-photon
state. Eve could take only the states that contain more than one photon, keep the
excess photon to herself, and then send the remaining photon through a channel of
transmissivity ηT/pmulti, such that Bob will not notice any change in his detection
rate. However, this requires that Eve can accurately estimate ηT. Assuming that
ηD is a known parameter set by the device manufacturers and that Eve can access
{Ti | i ∈ S , |S| = nest}, for some set of qubits S indexed by i, then she would want
to know the extent to which her estimate of η is likely to differ from its true value.
This equates to calculating the variance of η̂, which is her estimator for η.

This variance, when estimated from these nest independent measurements of T,
is given by the Cramér-Rao bound:

Var(η̂) =
1

nestIη
, (6.28)

where Iη is the Fisher information, given by

Iη = ∑
t

(
∂pt

∂η

)2 1
pt

. (6.29)

The ability to analytically calculate this derivative will therefore be useful to Eve in
estimating whether she can launch such an attack without being detected.

We may also note here that from Eq. 6.27 we may find an analytic expression for
the derivatives with respect to time, ∂t pt. We may see, for example, that (∂t pt)/pt =

−
[
loge(z−) z1−t

− − loge(z+) z1−t
+

]
/
[
z1−t
− − z1−t

+

]
, which would be significantly harder

to find, if at all possible, if we were finding pt for each new t by a matrix multiplica-
tion.

6.3 Error distributions

In any process, there will be events that have some probability to cause an error.
For example, if an event represents a state being stored on a quantum memory, then
in each time-step there is some non-zero probability that the memory fails and the
information stored on it is lost. When carrying out the process, we wish to know
p(k|t); the probability that we will pass such an edge k times, given an overall pro-
cess completion time of t. This implicitly assumes that such a process is heralded.
That is, we always know what stage of P we are at, and so can count the number of
occurrences of an error-carrying event. A non-heralded process would be one where
we have a description of GP , but we do not know how close we are to completion
at any time, but instead are simply informed when the process completes. If each

4We mentioned in Section 3.1.5 that decoy states defend against such attacks. However, we can
imagine situations where such a defence would fail. For example, such states may be implemented
such that an additional side-channel exists that indicates which states are decoys and which are not,
perhaps by some frequency or timing information.
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occurrence of an error-carrying event has a probability ε to cause an error, then the
overall probability that an error will have occurred is given by

p(error heralded) = 1− (1− ε)k,

p(error non-heralded) =
∞

∑
k=0

p(k|t)
[
1− (1− ε)k

]
.

(6.30)

In order to include this in our analysis, we must first identify which events (edges
in GP ) may cause an error. Then, for each event in question between edges j and i,
we multiply [MP ]i,j by an open complex variable, w, which we will call the counting
variable.

Now note that the value for pt, calculated either by Eq. 6.1 or Eq. 6.15, may be
seen as a sum of the probabilities of the different sequences of events by which the
process may be completed in time t. When one term in MP is an open variable, pt

will be expressed as a finite polynomial in w, which we will denote pt(w). For such a
sequence of events that includes k passes of an error-carrying edge and occurs with
probability p(k|t), pt(w) will include a term equal to p(k|t)wk. The full expression
for pt(w) will then be of the form

pt(w) = pt(1)
O(pt(w))

∑
k=0

p(k|t) wk. (6.31)

where O(pt(w)) is the order of pt(w). Thus by finding the coefficients of this poly-
nomial, we can find the error distributions. This polynomial is finite, with all terms
involving w to a non-negative power. Therefore it has no poles, so we cannot use
the methods of Section 6.2. Instead we can extract the coefficients by way of a
(fast) Fourier transform, which, unlike the complex analysis method, can be done
numerically. To do this, we first should identify some number NP (t) such that
O(pt(w)) ≤ NP (t) ≤ 2O(pt(w)), where the latter inequality is to avoid aliasing
effects.5 We then evaluate pt(w) at NP (t) equally spaced complex points, given by{

pt(ei2πk/NP (t))
∣∣k = 1, . . . , NP (t)

}
. The discrete Fourier transform of these evalu-

ated points reveals the first NP (t) coefficients of pt(w) (where all greater coefficients
are 0). Applications of this Fourier method for extracting coefficients to more gen-
eral analytic functions are described in [For81]. This construction may also be used
to account for different kinds of errors, by multiplying matrix elements by differ-
ent complex variables, w1, w2, w3, · · · , and performing a multi-dimensional Fourier
transform on pt(w1, w2, w3, · · · ) to determine p(k1, k2, k3, · · · |t).

From this we can also read off the average error rate for a process completing by
time t. i.e. the non-heralded error. Suppose we have only a single type of error.
From Eqs. 6.30 and 6.31, we can say that

5It may seem like we can always choose NP (t) = t. However, if MP is constructed from elementary
process matrices by Eq. 6.4 or Eq. 6.5 we may need to choose a larger value for NP (t).
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p(error non-heralded) =
1− pt(w = 1− ε)

pt(1)
(6.32)

The case for multiple types of error follows as a simple extension of this.

6.4 Innsbruck protocol analysis

In this section we will be considering the repeater protocol of the Innsbruck group
[BDCZ98]. In the standard implementation of this protocol, there are Q0 pairs of
quantum memories between each adjacent pair of repeater stations. These are all
connected in parallel, and then distilled to make Q1 ≤ Q2/2 pairs. By entanglement
swapping, these are then connected with adjacent pairs to form entanglement over
twice the length, and distilled again to form Q2 ≤ Q0/4 pairs in parallel between
each section, and so on. Previous analyses of this protocol have either assumed that
the entanglement connection can be done almost deterministically, or considered
that entanglements establish after some average time. So if each attempt to establish
entanglement between two stations has a probability to succeed of pc, then a simpli-
fied approach to understanding the system and estimating the key rate would be to
assume that all pairs establish entanglement after 1/pc attempts.

Considerable progress has been made in understanding and building upon the
Innsbruck protocol, since it is one of the most promising routes to constructing long-
distance quantum communication. Much of this work has focused on aspects such
as the relation between the key rate and experimental imperfections [ABB+13], the
specifics of how to implement the system with atomic ensembles [DLCZ01], under-
standing and improving the robustness against channel noise [SSDRG11, VK17] or
side-channel attacks [LWW+10, LLK07, NFSM+09, VK18]. However, one important
aspect is often overlooked, namely the statistical factor of waiting times arising from
probabilistic completion times of different elements. We now show that this has
severe implications for the performance of the protocol.

In our analysis, we let the Q0 parallel pairs of memories between each pair of
repeater stations be divided into bunches of q0 pairs. When all pairs within such
a bunch have completed, then they are distilled to q1 ≤ q0/2 pairs. This is an in-
equality, since distillation (as described more fully in Appendix C) is a probabilistic
process. This is shown in Fig. 3.4. Here, there is a trade-off inherent in the size of q0.
When q0 is small, the bunch will complete quickly on average. This means that the
first entangled pair to complete will not have to wait long before the last one com-
pletes, and so is less likely to accrue memory errors. However, one then has fewer
options for distilling a high fidelity state. Given a large set of states, we can instead
find a better optimal strategy for combining states under a distillation protocol to
result in a higher final secret key rate, at the expense of longer waiting times.
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6.4.1 Constructing the matrix

Here we consider at first a repeater consisting of two sections, separated by a dis-
tance L. Alice tried to establish entanglement between herself and Richard (a re-
peater station), and Richard between himself and Bob. The Markov graph for the
establishment of a single Bell pair is shown in Fig. 6.1. Let its Markov matrix be
MBell. We shall consider one time-step in this process to be 2L/c, where the factor of
2 arises since the receiving party needs to send a classical signal back to the sending
party to confirm whether the previous photon was received or not.

We now use Eq. 6.4 to construct the matrix for q0 pairs connecting in parallel be-
tween a pair of repeater stations. We want to include a complex counting variable,
w0 that counts how many time-steps a given quantum memory has to wait before
the others finish. However, we should note that we include this only on a single fac-
tor of the matrix for the section, Msect, to avoid multi-counting errors. The counter
w0 therefore counts how many errors accumulate on a particular entanglement link.
By symmetry, we can say that this error distribution is equal across all such entan-
glement links. Therefore,

Msect = [MBell + w0 diag(IBell)]⊗

[MBell + diag(IBell)]
⊗q0−1

− w0 diag(I⊗q0
Bell ),

(6.33)

where

MBell =

[
1− pc 0

pc 0

]
, IBell =

[
0
1

]
. (6.34)

where pc is the probability of entanglement being established in any particular at-
tempt. In Appendix D we describe how this may be reduced in dimension by sym-
metry arguments.

Once all pairs between two stations have established their entanglement, we
want to perform a distillation on these. These are matched up into bq0/2c pairs,
which are then distilled using the DEJMPS protocol [DEJ+96]. A DEJMPS distillation
between two noisy Bell pairs has some non-unity chance of success, which depends
on the fidelities of the states involved. However if the success probabilities were
fidelity-dependent, that would mean including terms in the matrix which depend
on the time taken for the process to reach that event, a modification which would
move us outside the realm of Markovian dynamics. Therefore we will choose some
minimum distillation success probability, λ, corresponding to the success probabil-
ity two states of fidelity Fmin being distilled with each other. We will later exclude
any runs of the process that would have used states of fidelity less than Fmin, as ex-
plained in Appendix C. In this way, any choice of λ will give us a lower bound on
the secret key rate, and we may freely maximise over choices of λ. We therefore add
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a row and column to Msect to form Mdist. The new column has an element represent-
ing distillation success, with a probability of 1− (1− λ)bq0/2c. The “failure” event (of
all distillations failing) resets the process of creating entanglement on that section.
Therefore, if Msect in Eq. 6.33 takes the form

Msect =

[
M′sect 0

aT 0

]
, (6.35)

for some matrix M′sect and vector a, then Mdist is given by

Mdist =

M′sect b 0
aT 0 0
0T s 0

 , (6.36)

where the vector b =
[
(1− λ)bq0/2c, 0, 0, · · · , 0

]T
, and s = 1− (1− λ)bq0/2c.

Finally, we construct the matrix for the entire system, Mfull, in a similar way to
Eq. 6.33 by considering two copies Mdist. We again include a complex counting vari-
able to account for all memories on one section needing to wait until the other side
has been connected and distilled. For this we make sure to use a different counting
variable, w1, so we can keep track of the distribution of errors that occur before and
after the first round of distillation.

6.4.2 Analysis of results

We can now analyse {p(k0, k1|t)}, where k0 and k1 are the number of passes of edges
weighted by w0 and w1 respectively. By doing this for a fixed q0, we can find a
distillation strategy that gives the maximum possible achievable secret key rate for a
given completion time, t, averaged over the error distribution (explained in detail in
Appendix C), which we shall call K(t|q0, pc, εW). Since the key rate of a protocol goes
inversely with the time taken to establish a raw bit, and linearly with the number of
parallel “bunches” of states that are used, Q0/q0, we will use the normalised average
key rate as a function of q0 as our main figure of merit for the system analysis:

K(q0, p, εW) =
1
q0

∞

∑
t=1

pt

t
K(t|q0, pc, εW) (6.37)

For the error probability per time period, εW , we assume the probability for
a quantum memory to not undergo an error decays exponentially with time as
εW = 1− exp(4L/cτ), where the extra factor of 2 is due to the fact that each en-
tangled pair involves 2 memories. Here, τ is the memory lifetime. In Fig. 6.4 we
show the a few examples of calculated normalised key rates for different values of
q0. In order to compare the insight gained from this method to the estimations that
might result from a less nuanced analysis, we have also shown the simplified secret
key rate. Here, we consider only the average connection time of an entanglement
link. That is to say, we assume that all links wait for a time 1/p, and then connect
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FIGURE 6.4: The normalised secret key rate, in the case where p = 0.1.
Plots are in the same order as in the legend. Solid lines show the
key rate including statistical effects (K) and the dashed line shows
the simplified key rate (Ksimp), which is identical for all εW .

deterministically. For a fair comparison, we have retained the same maximization
over distillation strategies that is outlined in Appendix C. The simplified secret key
rate may therefore be written as

Ksimp(q0, pc, εW) =
1
q0

∞

∑
t=1

pt

t + 1/pc
K(t|q0, 1, εW) (6.38)

When we consider Fig. 6.4, we can see that an estimation of the secret key rate
that considers only the average completion time severely underestimates the per-
formance of the protocol. This is particularly striking when we note that no errors
accumulate in the simplified analysis, due to the fact that no elements are left wait-
ing while others complete. In particular, the difference between the statistical and
simple key rates in the εW = 0.1% case reaches 3.8 orders of magnitude, which could
mean the difference between communicating in kilobits and megabits per second.

We may also note that, for low values of εW , the key rate rises with increased
bunch size. This means that increasing the pool of states available to be distilled has
a greater-than-linear effect on the key rate, highlighting the power and importance
of distillation to quantum technologies.

6.4.3 Analytic key rate bounds

The techniques presented above allow for a thorough investigation of the contribu-
tion of statistical factors arising from non-deterministic protocol elements towards
the secret key rate of a general quantum communication protocol. While this has
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been presented in-depth for a two-section repeater, practical systems will often de-
mand the application of a series of many repeaters. The current limit for repeater-
unassisted quantum communication is on the order of a hundred kilometers. If we
therefore wish to securely communicate on an intercontinental scale, we require a
method of analysis that can scale up to dozens of repeater sections. This presents
a limitation in our protocol: while the dependence of nP on q0 can be made linear
(Appendix D), the dependence on the number of sections, NS, remains exponential.

In the original analysis of the Innsbruck protocol, the fidelity of the final shared
state was not considered to be fundamentally dependent on the number of sections.
This is because the lth level of the protocol, which consists of taking entangled pairs
over some distance 2l L, distilling them, and connecting with adjacent sections to
form pairs over a distance 2l+1L, would produce pairs of a fidelity that did not de-
pend on l.

In addition to waiting times increasing with q0, there is also the issue that the
classical communication time grows with the distance over which pairs are entan-
gled. However, if statistical factors are ignored then this could be dealt with using
a “blind” protocol, where distillation and attempts are assumed to have succeeded
at every stage, and communication after the termination of the protocol allows for a
post-selection on the attempts that succeeded. This allows for the final fidelity to be
kept above the minimum level required for secure communication at the expense of
a hit to the raw key bit generation rate.

Once we include the statistical waiting times in our analysis, it is no longer true
that a non-zero secret key rate can be guaranteed for all length scales. In this section
we examine the behaviour of a repeater network with a minimum requirement of
physical qubits, which is q0 = 2NS . Instead of finding best key rates, we look here for
the parameters for which the secret key rate is lower bounded above zero. By finding
the threshold parameters that need to be reached for the protocol to operate, we can
identify concrete values for component designers to aim for, and give benchmarks
by which we can compare performances.

We will consider that after every quantum operation, a Werner twirling proce-
dure [BBP+96] is applied to all states. This involves unitarily mapping the state to
the singlet state, |Ψ−〉, then applying a randomly chosen local unitary Pauli opera-
tion identically each part of the entangled pair. This maps all states to Werner states
of the same fidelity (see Appendix C). By doing this, we can simply consider the ef-
fect of the repeater network as a recursive function on a single real variable - that of
the average fidelity. Note that this operation is not actually carried out, it is simply
used to repeatedly map states to the analytically simple Werner states. This may be
done since applying local operations cannot increase the strength of entanglement
by any measure, and so cannot increase the secret key rate. Note that this equivalent
to the argument used in Section 5.3.3 where we stated that the Werner state was the
highest entropy state in the Bell basis of fixed fidelity.

The analysis then proceeds as follows. Level 0 of the protocol consists of all pairs
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within one section connecting at initial fidelity Finit. Instead of considering the full
probability distribution of waiting times, we consider that all pairs wait for a number
of time-steps equal to the estimated time for the last pair to connect, kL, which upper
bounds the waiting time for each pair. This time is equal to the expectation value
for the largest order statistic from a sample of q0 chosen from the distribution with
cumulative distribution function 1− (1− pc)t. By choosing pc � 1, such that we
may allow the distributions to be approximated by continuous functions, we may
use results from [AG+79] to bound this by

kL ≤
(

q− 1√
2q− 1

+ 1

)
1

|log(1− pc)|
+ 1. (6.39)

These states are then distilled to produce states of fidelity

F0 = J[D(Finit, εW , kL)], (6.40)

where the functions describing the effect of the decay of quantum memories over
time kL on the average fidelity and DEJMPS distillation are given respectively by

D(F, εW , kL) = (1− εW)kL F +
1− (1− εW)kL

4
,

J(F) =
10F2 − 2F + 1
8F2 − 4F + 5

,
(6.41)

respectively. The lth level of the protocol consists of the following when l ≥ 1.
Within each pair of two sections, one section will complete first, and wait for a time
no longer than kA,l for the latter to complete. We show in Appendix E that this is
bounded by

kA,l ≤ 2l

[
H
(
2NS−l+1)

|log(1− pc)|
+ 1

]
, (6.42)

where H(n) = ∑n
m=1 1/m is the nth harmonic number. The average fidelity after

level l can then be defined recursively as

Fl = J(C(Fl−1, F̃l−1, εL)), (6.43)

where C gives the average fidelity after connecting two adjacent sections and twirling,
where we have allowed here for local gate errors. This is given by

C(Fa, Fb, εL) = D
(

1
3
(1− Fa)(1− Fb) + FaFb, εL, 1

)
, (6.44)

where εL is the probability that an error occurs when performing the local operations
involved in entanglement swapping, equal to 1− xga, and F̃ = D(Fl−1, εW , kA,l−1).

In Fig. 6.5 we show the minimum quantum memory lifetimes required for a non-
zero key rate as a function of pc. From this it can be seen that the probability for an
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entanglement attempt to succeed is the biggest factor in affecting the ability to se-
curely communicate. For comparison we also include the requirements for the case
that does not include statistical effects, where kA,l = 2l for all l. It can be seen that
the minimum memory requirements are slightly higher in the case where statisti-
cal effects are included, but this effect decreases with the number of sections over
which we connect. For an even comparison, we have not used blind distillation
in the non-statistical case. We see that there is a constant-factor increase in the re-
quired lifetime of the memories. In some cases this reaches as high as a factor 2
increase in the required lifetime of the quantum memories. The resultant bounds
are just reachable by the lifetimes of atomic ensembles, which can have lifetimes up
to 40ms [KMJ+11]. However, all bounds are well within the lifetimes of the nuclear
spin states of NV centers [LMY+05]. This implies that the main challenge towards
implementation of DLCZ-type protocols [DLCZ01] is the construction of optical el-
ements with high transmission and detection efficiencies, whereas NV-center-based
protocols [NTD+14, NTD+16, VK17] may be more suitable when these efficiencies
are low.

6.5 Summary

Many of the practical quantum technologies that are being proposed are inherently
probabilistic in nature, which leads to uncertain completion times and error distri-
butions. We have developed techniques that allow for thorough characterizations
of such statistical distributions in both the computational and analytic directions. In
terms of computational techniques, we have used Markov chains to analyse quan-
tum entanglement generation. We have shown how to form composite systems from
smaller elements in a constructive manner. We have then shown how to use the
Markov matrices for such composite systems to calculate the probability distribu-
tion over the number of errors that occur in the running of a general protocol. This
allows for a complete characterization of the fidelities of the states that are produced
by a quantum protocol. As an example, we have analysed the Innsbruck quantum
repeater protocol with a memory-error model. A thorough understanding of the set
of resultant errors has been shown to lead to a tighter bound on the secret key rate
than an analysis based only on an averaged approach. In some cases this resulted in
tightening the bounds on key rates by over 3 orders of magnitude – a clear indication
that a consideration of statistical effects does not simply provide a minor correction
to performance, but instead is fundamental to understanding the quantitative be-
haviour of a system.

In terms of analytic techniques, we have shown how elements of the eigenvectors
of a transformed form of the Markov matrix correspond to the probability generating
function of the process. This has been solved for an arbitrary term in the probability
distribution over completion times by using results from complex residue analysis.
This was done in a way such that the number of computational operations required
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FIGURE 6.5: Minimum quantum memory lifetime, τ =
−4L/ log(1− εW)c, required for a minimum-resources quan-
tum repeater to securely communicate over a network of 8 sections of
length L = 25km. Finit is the initial fidelity of entangled pairs before
distillation or connection, and NS is the number of sections. Solid
lines indicate the cases that include statistical factors, and dashed
lines do not. Both solid and dashed lines are ordered the same in the
plots and the legend. Blind distillation is not used in either case.

scales only linearly with the number of states in the Markov process, compared to
the quadratic scaling of a more direct approach. This has been highlighted for de-
riving an analytic expression for probability for double-heralding to complete in a
given time, and is shown to be instrumental in calculating the Fisher information of
this and similar processes. Finally we have shown how the theory of order statistics
can put bounds on the statistical effects on the secret key rate, and used this to bound
the minimum quantum memory lifetimes needed to run the Innsbruck repeater pro-
tocol.
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Chapter 7

Conclusion and future
developments

It is here that we look back at the main results of this thesis, and what has been
achieved over the course of this doctoral study, as well as looking forward at what
the future path of development for this field might be.

7.1 What has been done

In this thesis we have given an overview of the current field of quantum key dis-
tribution, and presented protocols, analyses, methods and results which strengthen
the security of such systems and allow for a more thorough understanding of their
statistical dynamics.

In Chapter 4 we examined the susceptibility of the BB84 QKD protocol to the
Trojan-Horse Attack, where an eavesdropper, Eve sends an optical state into a sys-
tem of Alice’s that encodes her qubits, and measures the reflected state to try to learn
the value of the qubit. We initially used a framework where Eve was permitted to
use any Gaussian state. Additionally, we allowed Alice to include an amount of
thermal noise with her outgoing state, which could muddy Eve’s estimation of the
qubit. We noted that this inclusion of thermal noise required a different method of
combining states than is usually used due to the fact that the strength of the combi-
nation should depend only on the average photon number in the noise, and that we
could take advantage of the structure of thermal noise and introduce it by applying
a two-mode squeezer between the signal and the vacuum, and tracing out a mode.

Within this framework, we showed that Eve does not gain in estimation ability
by using a squeezed state. This is because any practical system will only permit a
finite number of photons to enter. Squeezing a state increases the average photon
number, so one must economically distribute one’s photons between squeezing and
displacement, and Eve was shown to always benefit by maximising the displace-
ment of her state. From this, we showed that the distinguishability between different
qubit states, a parameter that Alice and Bob wish to minimise, was bounded by

∆ ≤ 1
2

[
1− exp

(
− µD

1 + 2µT

)]
, (7.1)
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where µD is the average number of photons that Eve receives back from her inputted
state, and µT is the average photon number of the thermal noise. We calculated the
optimal thermal noise strength for Alice to use, while noting that even in situations
where using such noise is impractical, the results still stand to prove the counter-
intuitive proposition that one should not necessarily try to minimise the noise in
one’s system.

We then moved to an analysis that generalised Eve’s attack to be an arbitrary
separable state. This was motivated by the fact that the high attenuation used by
Alice would destroy almost all entanglement that Eve used, and was backed-up by
the previously-found fact that her optimal Gaussian was separable. By considering
the effect of Alice’s attenuator as an expansion of Krauss operators, we were able to
show that, in the separable case,

∆ ≤ 1− e−µ
√

1− 3µ(2− µ)/4
2

, (7.2)

which presented a tighter bound than earlier work. We concluded this chapter with
a novel idea for how one may artificially increase the strength of an attenuator with
an active shutter system.

Next, we turned our attention from the problem of secure communication be-
tween two nearby parties, to that of linking together many QKD channels to com-
municate over large distances. In Chapter 5 we introduced our design for a novel
quantum repeater architecture. In doing so, our hope was to highlight the impor-
tance of choosing an efficient method for generating the primary entanglement be-
tween repeater stations. Our protocol recognised the utility of using NV centres for
the quantum memories, as had been suggested in earlier works, but moved beyond
this by proposing to take advantage of the level structure of the centres to perform
double-heralded entanglement generation. This has allowed for a method of pro-
ducing an initial entanglement with a fidelity that depends neither on the efficiency
of detectors, nor on the transmissivity of the optical channel. Additionally, the use
of NV centres allows for quantum information to be stored on the nuclear spins
whilst entanglement is generated on the electronic spins. This provides a natural
architecture from which to apply distillation of entanglement, as well as enabling
fault-tolerant entanglement-swapping through brokering.

Our analysis included a thorough investigation of dark counts, which proved to
have a negligible effect on the secret key rate. We also introduced the notion of the
contribution of statistical effects to the secret key rate. This is idea that different sec-
tions of a repeater will complete at different times, thus leading to decoherence of
quantum memories while the remaining sections catch up. We showed that, even
with such statistical effects included, our protocol performed very favourably, al-
lowing for non-zero key rates over thousands of kilometres, and giving high secret
key rates, even when normalised by the number of qubits used.

In Chapter 6, we investigated the statistical effects of probabilistic entanglement
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generation much more deeply. Here we began with developing powerful methods
and frameworks to analyse finite Markov processes. The first of these was a method
for developing and analysing the probability generating function of a process in
order to find a distribution over its completion times. Here, there were two main
results. First, we showed that for a process P described by a Markov matrix MP , re-
lated to a classical stochastic matrix, we can derive its generating functions as being
as proportional to elements of the vector

fP (z) = Null
[
zMT
P + diag(IP )− 1

]
, (7.3)

where IP is the vector of states on which P terminates. Next, we showed that this
may be solved, to give the probability that P completes at time t as

pt = −∑
i

Res
[

fP (z)
zt+1 , zi ∈ P( fP )

]
. (7.4)

This was used to derive an analytic description of the process of double-heralding,
and the statistics of its associated completion times.

When applying this to the problem of calculating an accurate estimate for the
secret key rate of a repeater network, we noted that is was not sufficient to calculate
how long the entire process took to complete, one must also keep track of the accu-
mulated errors. We showed how one may track the number of times that an edge
was traversed in a Markov graph, by multiplying the corresponding matrix element
by a complex variable. Evaluating the completion time at values of this variable
evenly distributed about the unit circle and taking a discrete Fourier transform re-
veals the probability distribution for the number of times that edge was traversed.
This enabled us to perform a thorough analysis of the Innsbruck repeater network
on two sections. In order to allow this to be practically extended to multiple sections,
we showed how one may use order statistics to get bounds on the statistical effects
on the key rate.

Throughout this work, it may be said that we have made multiple studies of a
fundamental trade-off, expressed in different forms. This is the notion that, when
operating a QKD protocol, one may make an exchange between raw key rate and
secrecy. We first encountered this idea in fundamental forms in Chapter 3. Here we
saw how the classical cryptographical concept of privacy amplification, by which
one may shorten a key to reduce the mutual information between it and an adver-
sary, was reflected in the quantum operation of entanglement distillation. This in-
volves a large number of weakly entangled states being consumed in the production
of a small number of more highly entangled states. When these states are used to
produce a key by the E91 protocol, then the parallel between this process and pri-
vacy amplification is elevated to an equality. In Chapter 4 we saw how privacy could
be amplified by the introduction of thermal noise, whilst at the same time, reducing
the proportion of key bit generation attempts on which Bob measures a single pho-
ton, thus lowering the raw key rate. Similarly, we saw in Chapter 5 how the choice
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of buffer value, δ, would affect both the raw key rate and the fidelity — we can wait
longer to guarantee a good entangled connection, but at the expense of a longer de-
lay between bit generations. In Chapter 6 we saw how our choice of bunching size,
q0, indirectly induced such a trade-off, by influencing the states available to distil.

When we consider these balances, we may find it reasonable to reach a more
general conclusion that any theoretical or experimental development must be con-
sidered in its proper context (in terms of security, computational power, etc.) to fully
understand its merits and demerits.

7.2 What is to be done

Just as the work presented here has been built from the excellent work done by a
great many scientists over many decades, we hope that our work will serve as a
small stepping-stone to further developments in the field of quantum communica-
tion. Here we discuss some potential ideas for further work.

Our protocol for a repeater network has shown that double-heralding on NV
centre-based qubits is an excellent method for generating entanglement. Whilst the
protocol presented is one way of using this method, it is not unique. The use of
double-heralding could provide highly entangled states for other architectures of
repeaters, such as ones that enable communication between multiple parties, or take
advantage of fault-tolerant encodings. If this method can be combined with a quan-
tum state configuration that is resistant against photon loss, then this would have
the potential to communicate over large distances, even before the use of repeater
stations. The analysis of such architectures may also benefit from using the tech-
niques developed in Chapter 6, since they are rather general in nature.

When repeaters are used, it has become clear from Chapters 5 and 6 that the
probabilistic nature of the initial entanglement generation is a critical factor in de-
termining the ultimate secret key rate, due to the resulting memory decoherences
that result from a statistical distribution of completion times for the sections. Whilst
double-heralding produces high-fidelity pairs, it does so on at most 50% of attempts.
This is due to the fact that, from the initial emitter state of |+,+〉, the desired entan-
gled output is |Ψ+〉, and |〈+,+|Ψ+〉|2 = 1/2. In order for us to maximise the secret
key rate generated by a repeater network, we want to make the probability of creat-
ing an entangled connection in any given attempt as high as possible.

Initial work on such a protocol has been investigated. Here, we might consider
that we again begin with two qubits initialised in the state

|+,+〉 = 1
2
[|0, 0〉+ |0, 1〉+ |1, 0〉+ |1, 1〉] , (7.5)

which are stimulated to cause photon emission as in double-heralding. The out-
puts of these may be passed through beam-splitters which mix them with a highly-
squeezed ancilla state, as shown in Fig. 7.1. In the situation where η = 1 and there
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Qubit 1

Qubit 2
D1

D2

D3

D4

SPDC 50:5050:50

50:50

50:50

FIGURE 7.1: The set-up for ancilla-assisted double-heralding (drawn
by Pieter Kok).

is no photon loss, then a final detection of an even number of photons would project
the state onto the |0, 0〉 , |1, 1〉 subspace. As the squeezing parameter ζ is increased,
the distribution on the number of photons in the ancilla becomes flat, and the pro-
jected state will approach |Φ±〉. Similarly, a detection of an odd number of photons
will project onto a state that approximates |Ψ±〉. However, as we discussed in Sec-
tion 7.1, this increase in success probability cannot come for free. When η < 1, as
in the case in any practical set-up, then as we increase the ζ, the probability that we
will lose a photon also increases. This will decrease the fidelity of our final state.
It is therefore important that we carefully calculate the optimal value of ζ if such a
protocol is to result in an increase in overall secret key rate. An alternative approach
would be to replace the squeezed state with another Bell state, say |Φ+〉. This would
result in higher-fidelity pairs, but bound the success probability at 75%. In any case,
we believe that the statistical analysis of QKD systems is a greatly important field,
and one with a great deal left to be discovered.
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Appendix A

Proof of the non-equivalence of
squeezer and beam-splitter
approaches to combined state
generation

In Section 4.1, we asserted that the proper way to model the addition of thermal
noise into the channel was by modelling the system as using a two-mode squeezer
of squeezing parameter ζ, squeezing our signal with a vacuum mode, and then trac-
ing out one mode (situation A). In particular, we claim that this is not equivalent to
a situation where we mix our signal with a thermal state of average photon number
µT on a beam-splitter of complex parameter ξ = φeiθ , and trace out one mode (situa-
tion B). When the parameter of the beam-splitter is acts on two modes â1, â2 by the
unitary

UBS = eξ â†
1 â2−ξ? â1 â†

2 , (A.1)

and maps

â1 7→ cos(φ)â1 + eiθ sin(φ)â2,

â2 7→ cos(φ)â2 − e−iθ sin(φ)â1.
(A.2)

When θ = 0, this is a beam-splitter of transmissivity η = cos2(φ).
Here we will examine the effect of these two situations with the use of symplectic

matrices on covariance matrices. Given an opical transformation, T, we can identify
a symplectic matrix corresponding to this transformation, ST. The covariance matrix
of the state, C, is then transformed as

C 7→ C′ = ST C S†
T. (A.3)

Suppose we take as our input signal to both situation A and B to be a single-
mode thermal state, with average photon number N. The covariance matrices for
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approaches to combined state generation

situations A and B are, respectively,

CA =

(
n + 1

2
12

)
⊕
(

1
2

12

)
,

CB =

(
n + 1

2
12

)
⊕
(

µT + 1
2

12

)
,

(A.4)

where ⊕ represents a direct sum. The symplectic matrices for a two-mode squeezer
(where we assume ζ is real) and a beam-splitter are, respectively,

S2MS =

[
cosh(ζ) 12 sinh(ζ) 12

sinh(ζ) 12 cosh(ζ) 12

]
,

SBS =

[
cos(φ) 12 sinh(φ) Rθ

sinh(φ) Rθ cos(φ) 12

]
,

(A.5)

where we take the clockwise 2D rotation matrix...

Rθ =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
, (A.6)

Applying the matrices in Eq. A.5 to those in Eq. A.4 by Eq. A.3, we arrive at:

C′A =

(
n + 1

2
cosh2(ζ) 12

)
⊕
(

1
2

cosh2(ζ) 12

)
,

C′B =

(
n + 1

2
cos2(φ) 12

)
⊕
(

µT + 1
2

cos2(φ) 12

)
,

(A.7)

From this we can see that no choice of beam-splitter parameter on a thermal state
can reproduce the behaviour of a two-mode squeezer on a vacuum, and situation B
is not reducible to situation A.
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Appendix B

Proof of Eq. 4.27

We want to show that Tr
[
ÊXE(ρ)

]
≥ e−µ. First note that since ÊX = |0〉〈0|+ |1〉〈1|+

|2〉〈2|, we can assert that

Tr
[
ÊXE(ρ)

]
≥ Tr [|0〉〈0| E(ρ)] . (B.1)

Since E does not map off-diagonal elements to diagonals and |0〉〈0| is diagonal, we
can consider only the effect of E on diagonal elements, and say that

Tr [|0〉〈0| E(ρ)] =Tr

[
|0〉〈0| E

(
∞

∑
k=0

pk,k |k〉〈k|
)]

=
∞

∑
k=0

pk,k Tr [|0〉〈0| E(|k〉〈k|)] ,

(B.2)

where pk,k is the k-th diagonal element of ρ.
We want our ultimate bounds to be in terms of the average photon number of

the states. To relate the above quantity to this, we claim that

∞

∑
k=0

pk,k Tr [|0〉〈0| E(|k〉〈k|)] ≥ Tr [|0〉〈0| E (|〈n̂〉ρ〉〈〈n̂〉ρ|)] . (B.3)

That is to say, the average of the probabilities of losing each of many different photon
number states is greater than the probability of losing one state of the average photon
number (which we assume without loss of generality to be an integer).

Since a state is mapped to |0〉〈0| if and only if it loses all of its photons, we can
say that

Tr [|0〉〈0| E(|k〉〈k|)] = (1− η)k . (B.4)

We will consider first the case of ρ being a mixture of only two Fock states, with
weightings p and 1− p and respective photon numbers n and m. By using Eq. B.4,
Eq. B.3 then becomes

p(1− η)n + (1− p)(1− η)m ≥ (1− η)pn+(1−p)m. (B.5)

If we let n = m + δ, then this simplifies to
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− yp + py− p + 1 ≥ 0, (B.6)

where we have used y ≡ (1 − η)δ. The claim then reduces to proving that this
polynomial is satisfied for all y, p ∈ [0, 1].

Let f (p) = −yp + py − p + 1. We have f (0) = f (1) = 0. This function has
a unique stationary point between 0 and 1, and the curvature = − [log(y)]2 yp is
everywhere negative. Therefore f (p) ≥ 0. This proves the claim for a bimodal
initial state. The general claim follows by induction.

We now have that

Tr
[
ÊXE(ρ)

]
≥ (1− η)〈n̂〉ρ =

(
1− µ

〈n̂〉ρ

)〈n̂〉ρ
. (B.7)

Since the average input photon number is generally of the scale of dozens of orders
of magnitude above unity, we may confidently take the limit of 〈n̂〉ρ → ∞, which
reduces Eq. B.7 to Eq. 4.27.
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Appendix C

Detailed description of the analysis
of the Innsbruck protocol

The first step in analysing the modified Innsbruck protocol is to construct the asso-
ciated Markov matrix, as described in Section 6.4.1 and Appendix D. To do this we
fix q0, which sets the size of the matrix, and pc, which determines the elements of the
matrix. For a fixed t, a joint distribution of k0 and k1 is then calculated.

We assume that the states that are initially created after establishment is con-
nected are Werner states of the form

ρ = ρW(Finit) =
4Finit − 1

3

∣∣Φ+
〉 〈

Φ+
∣∣+ 1− Finit

3
1. (C.1)

where Finit is the fidelity with respect to |Φ+〉. We then choose some kmax that gives
some largest acceptable error. Then from the marginal distribution on k0 we then
choose 2q0 − 1 values for k0 (all of which are below kmax), and we choose a final
value for k0 and a value for k1 from the full error distribution. These transform the
2q0 states (by q0 on each section of the repeater network) as:

ρ 7→ (1− εW0)ρ + εW01, (C.2)

where εW0 are defined as heralded errors as in Eq. (6.30), with k = k0.
We now partition the set of states into a ‘left set’ and a ‘right set’, corresponding

to the two different section of the network, and randomly apply a distillation to each
set. To do this, we pair up the states within a set. If q0 is odd, one state is randomly
chosen to proceed to the next round without being distilled. The remaining pairs
are distilled according to the DEJMPS protocol, which succeeds with probability ND

(Eq. 2.56).
As explained in the main text, when translating the distillation success proba-

bility to a term in the Markov matrix, we use a constant probability of distillation
success, λ. This is related to our choice of kmax by

kmax =

⌊
log

(
3
√

2λ− 1
4Finit − 1

)
1

log (1− εW0)

⌋
. (C.3)
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This is because Two Werner states that have waited for kmax will be of fidelity Fmin.
If these are distilled with each other the success probability will be no less than λ.

After the states on each section are distilled, the number of remaining states on
each side, qL

1 and qR
1 , are random variables, with p(qL,R

1 = x) = λx(1 − λ)
1
2 q0−x.

When we perform entanglement swapping to connect the two sections, the final
number of states will be q1 = min(qL

1 , qR
1 ) with

p(q1 = x) = p(qL
1 = x) ·

q0/2

∑
y=x

p(qR
1 = y) +

p(qR
1 = x) ·

q0/2

∑
y=x

p(qL
1 = y) −

p(qL
1 = x) · (qR

1 = x)

(C.4)

One of the two sets only then undergoes waiting errors while waiting for the
other side to complete, by evolving according to Eq. (C.2) but with the εW1 calculated
from k1.

For a fixed q1, we then calculate the secret key rate as follows. We choose a ran-
dom pairing of states on the left with states on the right. They are deterministically
connected by applying a CNOT gate to the part of each Bell state stored in the re-
peater, and then measuring each in the X basis. This maps two states of diagonal
coefficients1 (a1, b1, c1, d1), (a2, b2, c2, d2) to one with coefficients

a1a2 + b1b2 + c1c2 + d1d2

a1b2 + a2b1 + c1d2 + c2d1

a1c2 + a2c1 + b1d2 + b2d1

a1d2 + a2d1 + b1c2 + b2c1

 . (C.5)

These final states may then be distilled again. We optimize over combinations of
distillation pairings to produce q2 ≤ q1/2 final pairs, in order to maximise the secret
key rate, given by

K(t|q0, q1, pc, εW) =
q2

∑
i=1

1− 2h2(εi), (C.6)

where εi is the bit error of the ith entangled pair, averaged between measuring in the
Z basis and the X basis.

We must finally multiply pt by the probability that none of the states involved
in completing the process were of a fidelity less than Fmin. As such, we make the
transformation

pt 7→ pt ×
(

1
pt

t

∑
k=kmax

p(k|t)
)q0

. (C.7)

1On the basis ordered as
∣∣Φ+

〉
,
∣∣Ψ−〉 ,

∣∣Ψ+
〉

,
∣∣Φ−〉.
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This key rate is optimized over distillation strategies (both before and after entanglement-
swapping) and entanglement-swapping pairing choices, and averaged over values
of q1 and selections of sets of k0, k1 from the distribution to get K(t|q0, pc, εW), which
is used to get K(q0, pc, εW) by Eq. (6.37).
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Appendix D

Simplifying Markov matrices with
high symmetry

The Markov matrix for a single section given in Eq. (6.33) is 2q0-dimensional. While
this accurately describes the dynamics of the system, we can take advantage of the
fact that the system contains a high degree of symmetry to reduce the size of the ma-
trix. We can use the fact that the probability to move between one state and another
is only dependent on how many entanglements have been established in the initial
and final states, and not on the specifics of which entanglements. We can therefore
use a technique called “lumping,” where we create a partition of the states into sets,
as shown in Fig. D.1 (discussed in more detail in [KS83]). From this we can consider
a new process, where each set of states is considered as a single state.

When we lump states together, we should ensure that the transition probabilities
in the lumped process produce the same system behaviour as in the unlumped pro-
cess. Let M be the (unlumped) Markov matrix for the process, and A1, A2, · · · be a
partitioning of the states, where each A is a set of states disjoint from all other sets.
Then in order to be able to lump the process we require that, for each Am and An,

∑i∈Am [M]i,j should be identical for all j ∈ An.
For our system this is true when we simply consider the transition probabili-

ties, but the symmetry is broken when we include the complex counting variable,
w0, since this is only applied to one of the pairs. However, we can re-introduce a
symmetry here, since w0 is designed to capture the error rate on a typical pair, and
not a particular pair. We pre-multiply the original Markov matrix by an in-set maxi-
mal mixing matrix, Mmix, which takes us from some state to any other state with the
same number of completed entangled pairs with equal probability. This is given by
a block diagonal, where each block has all elements equal to 1/n, where here n is the
size of the block. This is shown for the q0 = 3 case below.
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FIGURE D.1: On the left we have the Markov matrix for 3 pairs of
entanglement trying to establish in parallel, with transition proba-
bilities not shown for clarity, constructed in a way that tracks the
status of each pair. The binary codes on each state show whether
the first, second and third pairs are connected (1) or unconnected (0).
Shown as red dotted lines are the events involving the first pair wait-
ing after its completion. These edges translate to terms in the ma-
trix that should be multiplied by an error-counting variable, w0. On
the right, we have grouped the states by how many pairs are con-
nected. Terminating nodes shown in black. If the probability for each
unentangled pair to establish its entanglement in a given time-step
is pc, then the probability to transition from node j to node i in the
lumped process after application of the mixing matrix is given by
(q−j

q−i)pi−j
c (1− pc)q−i[q + (w0 − 1)j]/q.

Mmix =
1
3



3 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 3


(D.1)

This effectively distributes the counting variable amongst the states, giving it the
symmetry required to lump the states together. This reduces the number of unique
states in the process corresponding to one section from 2q to q + 1.
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Proof of Eq. 6.42

The distance over which communication has to occur at level l scales with 2l . Given
two sections of a repeater, there is some number of time-steps k2sec between the
first completing and the second. After the second section completes, there must
be one more round of classical communication to indicate this fact. Therefore kA,l =

2l(k2sec + 1).
We wish to calculate k2sec, which is given by E[|x− y|], where x and y are two

times drawn from the distribution, f (t) = dt C(t), where the cumulative distribution
function is given by C(t) = [1 − (1 − pc)t]q. Approximating these as continuous
distributions, we can write this as

E[x− y|x > y] + E[y− x|y > x] =

2
∫ ∞

0

∫ y

0
(y− x) f (x) f (y) dx dy.

(E.1)

Let this inner (
∫
· · ·dx) integral be I. Then

I(y) = y C(y)−
∫ y

0
x f (x) dx,

= y C(y)−
{∫ y

0

d
dx

[x C(x)]dx−
∫ y

0
C(x) dx

}
,

=
∫ y

0
C(x) dx,

≤ y C(y).

(E.2)

Therefore, we have

E[|x− y|] ≤ 2
∫ ∞

0
f (y) y C(y) dy,

= 2
∫ 1

0
y C dC,

=
2

log(1− pc)

∫ 1

0
log
(

1− C1/q
)

C dC,

=
H(2q)

|log(1− pc)|
,

(E.3)
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where H(n) = ∑n
m=1 1/m is the nth harmonic number. Here, q is equal to the total

number of elementary pairs that need to connect in each “section” at a given level,
which is given by 2NS−l , which arrives at Eq. 6.42.
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